
Optimizing Feature Set for Click-Through Rate Prediction

Fuyuan Lyu∗ Xing Tang∗ Dugang Liu†‡

McGill University FiT, Tencent Guangdong Laboratory of Artifcial
Montreal, Canada Shenzhen, China Intelligence and Digital Economy (SZ)

fuyuan.lyu@mail.mcgill.ca shawntang@tencent.com Shenzhen, China
dugang.ldg@gmail.com

Liang Chen Xiuqiang He‡ Xue Liu
FiT, Tencent FiT, Tencent McGill University

Shenzhen, China Shenzhen, China Montreal, Canada
leocchen@tencent.com xiuqianghe@tencent.com xueliu@cs.mcgill.ca

ABSTRACT
Click-through prediction (CTR) models transform features into la-
tent vectors and enumerate possible feature interactions to improve
performance based on the input feature set. Therefore, when select-
ing an optimal feature set, we should consider the infuence of both
features and their interaction. However, most previous works focus
on either feature feld selection or only select feature interaction
based on the fxed feature set to produce the feature set. The former
restricts search space to the feature feld, which is too coarse to
determine subtle features. They also do not flter useless feature
interactions, leading to higher computation costs and degraded
model performance. The latter identifes useful feature interaction
from all available features, resulting in many redundant features in
the feature set. In this paper, we propose a novel method named
OptFS to address these problems. To unify the selection of features
and their interaction, we decompose the selection of each feature
interaction into the selection of two correlated features. Such a
decomposition makes the model end-to-end trainable given various
feature interaction operations. By adopting feature-level search
space, we set a learnable gate to determine whether each feature
should be within the feature set. Because of the large-scale search
space, we develop a learning-by-continuation training scheme to
learn such gates. Hence, OptFS generates the feature set containing
features that improve the fnal prediction results. Experimentally,
we evaluate OptFS on three public datasets, demonstrating OptFS
can optimize feature sets which enhance the model performance
and further reduce both the storage and computational cost.

CCS CONCEPTS
• Information systems → Recommender systems; Online ad-
vertising.
∗Both authors contributed equally to this research.
†This work was done when working at FiT, Tencent.
‡Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583545

KEYWORDS
CTR Prediction, Feature Set, Feature Interaction

ACM Reference Format:
Fuyuan Lyu, Xing Tang, Dugang Liu, Liang Chen, Xiuqiang He, and Xue
Liu. 2023. Optimizing Feature Set for Click-Through Rate Prediction. In
Proceedings of the ACM Web Conference 2023 (WWW ’23), April 30–May 04,
2023, Austin, TX, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3543507.3583545

1 INTRODUCTION
Click-through rate prediction has been a crucial task in real-world
commercial recommender systems and online advertising systems.
It aims to predict the probability of a certain user clicking a rec-
ommended item (e.g. movie, advertisement) [2, 27]. The standard
input for CTR prediction consists mainly of a large set of categori-
cal features organized as feature felds. For example, every sample
contains a feature feld gender in CTR prediction, and the feld gen-
der may include three feature values, male, female and unknown.
To avoid ambiguity, we term feature values as features hereafter.
General CTR prediction models frst map each feature in the feature
set into a unique real-valued dense vector through embedding ta-
ble [21]. Then these vectors are fed into the feature interaction layer
to improve the prediction by explicitly modelling low-order feature
interaction by enumerating feature set [22]. The fnal prediction
of the classifer is made upon the feature embedding and feature
interactions, which are both heavily infuenced by the input feature
set. The general framework is shown in Figure 1. Hence, the input
feature set plays an important role in CTR prediction.

Blindly inputting all available features into the feature set is nei-
ther efective nor efcient. From the view of efectiveness, certain
features can be detrimental to model performance. Firstly, these
features themselves may only introduce extra learnable parameters,
making the prediction model prone to overftting [1, 9]. Secondly,
certain useless interactions introduced by these features also bring
unnecessary noise and complicate the training process [14], which
degrades the fnal prediction. Notice that these two factors are
closely related when selecting the feature set. If one feature x� is
fltered out from the set, all its related interactions ⟨x� , ·⟩ should be
excluded in the model as well. Correspondingly, informative inter-
actions ⟨x� , x� ⟩ is a strong indicator to keep x� in the feature set [19].
From the view of efciency, introducing redundant features into a
feature set can be inefcient in both storage space and computation

3386

https://doi.org/10.1145/3543507.3583545
https://doi.org/10.1145/3543507.3583545
https://doi.org/10.1145/3543507.3583545
mailto:permissions@acm.org
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583545&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Fuyuan Lyu et al.

cost. As the embedding table dominates the number of parameters
in CTR models [6], a feature set without redundant features will
greatly decrease the size of the models. Moreover, a feature set
with useful features can zero out the computation of many useless
feature interaction, which greatly reduce the computation cost in
practice. An optimal feature set should keep features considering
both efectiveness and efciency.

Eforts have been made to search for an optimal feature set
from two aspects. Firstly, Several methods produce the feature set
based on feature selection. Because of the large-scale CTR dataset,
some methods [8, 30, 32] focus on the feld level, which results in
hundreds of felds instead of millions of features. However, the feld
level is too coarse to fnd an optimal feature set. For instance, the
feature feld ID contains user/item feature id in real datasets. The
id of certain cold users/items might be excluded from the feature
set due to the sparsity problem [29], which is difcult to handle at
the feld level. Besides, these methods [8, 13] fail to leverage the
infuence of feature interaction, which is commonly considered an
enhancement for the model performance [20, 38]. Secondly, there is
also some weakness concerning feature interaction methods, which
implicitly produce the feature set. On the one hand, some feature
interaction selection methods [12, 14, 20], inspired by the ideas of
neural architecture search [15, 18], tend to work on a fxed subset of
input feature set, which commonly includes the redundant features.
On the other hand, some method [19] constructs a locally optimal
feature set to generate feature interaction in separated stages, which
requires many handcraft rules to guide the search scheme. Given
that many operations of feature interactions are proposed [7, 24, 31],
searching an optimal feature set with these operations in a unifed
way can reduce useless feature interaction. As discussed, optimizing
the feature set incorporated with the selection of both feature and
feature interaction is required.

In this paper, we propose a method, Optimizing Feature Set
(OptFS), to address the problem of searching the optimal feature
set. There are two main challenges for our OptFS. The frst chal-
lenge is how to select the feature and its interaction jointly, given
various feature interaction operations. As discussed above, an op-
timal feature set should exclude features that introduce useless
interaction in models. We tackle this challenge by decomposing
the selection of each feature interaction into the selection of two
correlated features. Therefore, OptFS reduces the search space of
feature interaction and trains the model end-to-end, given various
feature interaction operations. The second challenge is the number
of features in large-scale datasets. Notice that the possible number
of features considered in our research could be 106, which is in-
credibly larger than 100 feature felds in previous works [8, 32]. To
navigate in the large search space, we introduce a learnable gate
for each feature and adopt the learning-by-continuation [16, 28, 36]
training scheme. We summarize our major contributions as follows:

• This paper frst distinguishes the optimal feature set problem,
which focuses on the feature level and considers the efectiveness
of both feature and feature interaction, improving the model
performance and computation efciency.

• We propose a novel method named OptFS that optimizes the
feature set. Developing an efcient learning-by-continuation
training scheme, OptFS leverages feature interaction operations

Figure 1: Overview of the general CTR framework.

trained together with the prediction model in an end-to-end
manner.

• Extensive experiments are conducted on three large-scale public
datasets. The experimental results demonstrate the efectiveness
and efciency of the proposed method.
We organize the rest of the paper as follows. In Section 2, we

formulate the CTR prediction and feature selection problem and
propose a simple but efective method OptFS. Section 3 details
the experiments. In Section 4, we briefy introduce related works.
Finally, we conclude this paper in Section 5.

2 OPTFS
In this section, we will frst distinguish the feature set optimization
problem in Section 2.1 and detail how OptFS conduct feature selec-
tion in Section 2.2. Then, we will illustrate how OptFS infuences
feature interaction selection in Section 2.3. Finally, we will illustrate
the learning-by-continuation method in Section 2.4.

2.1 Problem Formulation
In this subsection, we provide a formulation of the feature set
optimization problem. Usually, features that beneft the accurate
prediction are considered useful in CTR models. In our setting, we
represent all possible features as X = {x1, x2, · · · , x� }. x� is a one-
hot representation, which is very sparse and high-dimensional. As
previously discussed, the feature set optimization problem aims to
determine the useful features among all possible ones, which can
be defned as fnding an optimal feature set Xg ⊂ X. This can be
formulated as follows:

3387

Optimizing Feature Set for Click-Through Rate Prediction WWW ’23, April 30–May 04, 2023, Austin, TX, USA

min L(D |W), D = {Xg, Y},
W

� .� .∀x ∈ Xg, L(Xg) > L(Xg − {x}), (1)

∀x ∉ Xg, L(Xg) ≥ L(Xg + {x}),
where L denotes the loss function, W denotes the model parame-
ters, and Y denotes the corresponding labels.

2.2 Feature Selection
Each feld z� contains a proportion of all possible features, denoted
as:

z� = {x�� }, 1 ≤ �� ≤ �, (2)

which indicates that the relationship between feld and feature is a
one-to-many mapping. In practice, the number of feld � is much
smaller than that of feature �. For instance, online advertisement
systems usually have � ≤ 100 and � ≈ 106. So the input of CTR
models can be rewritten as follows from both feature and feld
perspectives:

z = [z1, z2, · · · , z�] = [x�1 , x�2 , · · · , x��], (3)

where the second equal sign means that for input z, the correspond-
ing feature for feld z� is x�� as shown in Equation 2.

We usually employ embedding tables to convert z� s into low-
dimensional and dense real-value vectors. This can be formulated
as e� = E × z� = E × x�� , 1 ≤ � ≤ �, 1 ≤ �� ≤ �, where E ∈ R�×�

is the embedding table, � is the number of feature values and � is
the size of embedding. Then embeddings are stacked together as a
embedding vector e = [e1, e2, · · · , e�].

In our work, we propose feature-level selection. Instead of doing
feld-level selection, we formulate selection as assigning a binary
gate g�� ∈ {0, 1} for each feature embedding e�� . After selection,
the feature embeddings can be formulated as follows:

ge ⊙ (E × x��). (4)
��

= g�� ⊙ e�� = g��

When g�� = 1, feature x�� is in the optimal feature set Xg and
vice versa. Notice that previous work [8, 30, 32] assigns feld-level
feature selection. This means that g�� ≡ g� ∈ {0, 1} for each feld
�� , indicating the keep or drop of all possible features {x�� } in
corresponding feld.

Then, these embeddings are stacked together as a feature-selected
g g ggembedding vector e = [e , e , · · · , e]. The fnal prediction can
�1 �2 ��

be formulated as follows:

�̂ = F(g ⊙ E × x|W) = F(Eg × x|W), (5)

where g ∈ {0, 1}� refers to gating vectors indicating whether
certain feature is selected or not, Eg = g ⊙ E indicates the feature-
selected embedding tables. The Eg can also be viewed as the feature
set Xg after transformation from the embedding table, denoted as
Eg = E × Xg.

2.3 Feature Interaction Selection
The feature interaction selection aims to select benefcial feature
interaction for explicitly modelling [14, 20]. The feature interaction
layer will be performed based on e in mainstream CTR models.
There are several types of feature interaction in previous study [12],

e.g. inner product [7]. The interaction between two features e� and
e� can be generally represented as:

v(�, �) = O(e� , e�), (6)

where O, as the interaction operation, can vary from a single layer
perceptron to cross layer[31]. The feature interaction selection can
be formulated as assigning g

′
for each feature interaction. All (�, �)

feature interactions can be aggregated together for fnal prediction:
g�̂ = H((g

′
⊙ v) ⊕ G(eg)) = H(v

′
⊕ G(eg)), (7)

where symbol ⊕ denotes the concatenation operation, G(·) denotes
the transformation function from embedding space to feature in-
teraction space, such as MLP [7, 31] or null function [24]. H(·)
represents the prediction function. The combinations of G(·), O(·)
and H(·) in mainstream models are summarized in Table 1.

Table 1: Summary of G(·), O(·) and H(·) in various models

Model G(·) O(·) H(·)
FM [26] null inner product null

DeepFM [7] MLP inner product average
DCN [31] MLP cross network average
IPNN [24] null inner product MLP
OPNN [24] null outer product MLP
PIN [25] null MLP MLP

In reality, a direct way to explore all possible feature interaction
is introducing a feature interaction matrix {g

′

(�� ,� �) } for 2nd-order
feature interaction {x�� }. But it is impossible as we would , x� �
have ��

2 ≈ 1012 gate variables. To efciently narrow down such a
large space, previous works [12, 14, 20] restrict the search space to
feature feld interaction, reducing the number of variables to ��

2 ≈
1000. This can be formulated as g

′ ≡ g
′

. However, such(�, �) (�� ,� �)
relaxation may not be able to distinguish the diference between
useful and useless feature interaction within the same feld. As it has
been proven that informative interaction between features tends to
come from the informative lower-order ones [34], we decompose
the feature interaction as follows:

′
g(�� ,� �) = g�� × g� � , (8)

which indicates that the feature interaction is only deemed useful
when both features are useful. An illustration of the decomposition
is shown in Figure 2. Hence, the fnal prediction can be written as:

�̂ = H((g × g ⊙ v) ⊕ G(g ⊙ e)), (9)

which means that the gating vector g that selects features can also
select the feature interaction given O(·). Such a design can reduce
the search space and obtain the optimal feature set in an end-to-end
manner.

2.4 Learning by Continuation
Even though the search space has been narrowed down from ��

2 +�
to � in Section 2.3, we still need to determine whether to keep
or drop each feature in the feature set. This can be formulated
as a l0 normalization problem. However, binary gate vector �
is hard to compute valid gradient. Moreover, l0 optimization is

3388

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Fuyuan Lyu et al.

Figure 2: The Overview of OptFS.

known as a NP-hard problem [23]. To efciently train the entire
model, we introduce a learning-by-continuation training scheme.
Such a training scheme has proven to be an efcient method for
approximating l0 normalization [28], which correlates with our
goal.

The learning-by-continuation training scheme consists of two
parts: the searching stage that determines the gating vector g and
the rewinding stage that determines the embedding table e and
other parameters W. We will introduce them separately in the
following sections.

2.4.1 Searching. To efciently optimize the feature set with feature-
level granularity, we introduce a continual gate g� ∈ R� . During
the searching stage, we introduce an exponentially-increased tem-
perature value � to approximate �0 normalization. Specifcally, the
actual gate g is computed as:

� (g� × �)
= �� /� g = , � (10)(0)

� (g)�

(0)where g is the initial value of the continual gate g� , � is the �
1sigmoid function � (�) = applied element-wise, � is the cur-1+� −�

rent training epoch number, � is the total training epoch and �
is the fnal value of � after training for � epochs. This would al-
low the continuous gating vector g� to receive valid gradients in
early stages yet increasingly approximate binary gate as the epoch
number � grows. An illustration of Equation 10 is shown in Figure
3(a).

The fnal prediction is calculated based on Equation 9. The cross-
entropy loss (i.e. log-loss) is adopted for each sample:

CE(�, �̂) = � log(�̂) + (1 − �) log(1 − �̂), (11)

where � is the ground truth of user clicks. We summarize the fnal
accuracy loss as follows: ∑ 1

LCE (D |{E, W}) = − CE(�, F(E × x|W)), (12)|D | (x,�) ∈D

where D is the training dataset and W is network parameters except
the embedding table E. Hence, the fnal training objective becomes:

min LCE (D |{g� ⊙ E, W}) + �∥g∥1, (13)
g� ,E,W

where � is the regularization penalty, ∥·∥1 indicates the l1 norm to
encourage sparsity. Here we restate l0 norm to l1 norm given the
fact that ∥g∥0 = ∥g∥1 for binary g.

After training � epochs, the fnal gating vector g is calculated
through a unit-step function as follows:(

0, g� ≤ 0
g = (14)

1, otherwise
.

Such a unit step function is also visualized in Figure 3(b).

(a) Searching Stage (b) Re-training Stage

Figure 3: Visualization of gating vector � during searching
and retraining stages.

2.4.2 Retraining. In the searching stage, all possible features are
fed into the model to explore the optimal feature set Xg. Thus, the
useless features might hurt the model’s performance. To address
this problem, we need to retrain the model after obtaining the
optimal feature set Xg.

After determining the gating vector g, we retrain the model pa-
rameters E and W as the corresponding values at �� epoch, which
is carefully tuned in our setting. This is because most CTR mod-
els early stopped in several epochs, making them more sensitive
towards initialization and prone to overftting [37]. The fnal pa-
rameters E and W are trained as follows:

min LCE (D |{g ⊙ E, W}) . (15)
E,W

The overall process of our model is summarized in Algorithm 1.

Algorithm 1 The OptFS Algorithm

Require: training dataset D, initialization epoch �� , total epoch �
Ensure: gating vector g, model parameters {E, W}
1: ## Searching ##
2: t=0
3: while t < T do
4: t = t + 1
5: while D is not fully iterated do
6: Sample a mini-batch from the training dataset
7: {E� , W� }, g = Searching(D) ⊲ Equation 13
8: end while
9: if � == �� then
10: {Ê, Ŵ } ⇐ {E� , W� }
11: end if
12: end while
13: g = Discretization({g� }) ⊲ Equation 14
14: ## Retraining##

ˆ15: Retrain {E, W} given g with {Ê, W} as initialization ⊲
Equation 15

3389

Optimizing Feature Set for Click-Through Rate Prediction WWW ’23, April 30–May 04, 2023, Austin, TX, USA

3 EXPERIMENT
In this section, to comprehensively evaluate our proposed method,
we design experiments to answer the following research questions:
• RQ1: Could OptFS achieve superior performance compared with
mainstream feature (interaction) selection methods?

• RQ2: How does the end-to-end training scheme infuence the
model performance?

• RQ3: How does the re-training stage infuence the performance?
• RQ4: How efcient is OptFS compared to other feature (interac-
tion) selection methods?

• RQ5: Does OptFS select the optimal features?

3.1 Experiment Setup
3.1.1 Datasets. We conduct our experiments on three public real-
world datasets. We describe all datasets and the pre-processing
steps below.

Criteo1 dataset consists of ad click data over a week. It con-
sists of 26 categorical feature felds and 13 numerical feature felds.
Following the best practice [38], we discretize each numeric value
� to ⌊log2 (�)⌋, if � > 2; � = 1 otherwise. We replace infrequent
categorical features with a default "OOV" (i.e. out-of-vocabulary)
token, with min_count=10.

Avazu2 dataset contains 10 days of click logs. It has 24 felds with
categorical features. Following the best practice [38], we remove
the instance_id feld and transform the timestamp feld into three
new felds: hour, weekday and is_weekend. We replace infrequent
categorical features with the "OOV" token, with min_count=10.

KDD123 dataset contains training instances derived from search
session logs. It has 11 categorical felds, and the click feld is the
number of times the user clicks the ad. We replace infrequent fea-
tures with an "OOV" token, with min_count=10.

3.1.2 Metrics. Following the previous works [7, 26], we use the
common evaluation metrics for CTR prediction: AUC (Area Under
ROC) and Log loss (cross-entropy). Note that 0.1% improvement
in AUC is considered signifcant [7, 24]. To measure the size of the
feature set, we normalize it based on the following equation:

Ratio = #Remaining Features/�. (16)

3.1.3 Baseline Methods and Backbone Models. We compare the
proposed method OptFS with the following feature selection meth-
ods: (i) AutoField [32]: This baseline utilizes neural architecture
search techniques [15] to select the informative features on a feld
level; (ii) LPFS [8]: This baseline designs a customized, smoothed-
l0-liked function to select informative felds on a feld level; (iii)
AdaFS [13]: This baseline that selects the most relevant features for
each sample via a novel controller network. We apply the above
baselines over the following mainstream backbone models: FM [26],
DeepFM [7], DCN [31] and IPNN [24].

We also compare the proposed method OptFS with a feature
interaction selection method: AutoFIS [14]. This baseline utilizes
GRDA optimizer to abandon unimportant feature interaction in a
feld-level manner. We apply AutoFIS over the following backbone
models: FM [26], DeepFM [7]. We only compare with AutoFIS on

1https://www.kaggle.com/c/criteo-display-ad-challenge
2http://www.kaggle.com/c/avazu-ctr-prediction
3http://www.kddcup2012.org/c/kddcup2012-track2/data

FM and DeepFM backbone models because the original paper only
provides the optimal hyper-parameter settings and releases source
code under these settings.

3.1.4 Implementation Details. In this section, we provide the im-
plementation details. For OptFS, (i) General hyper-params: We set
the embedding dimension as 16 and batch size as 4096. For the MLP
layer, we use three fully-connected layers of size [1024, 512, 256].
Following previous work [24], Adam optimizer, Batch Normaliza-
tion [10] and Xavier initialization [5] are adopted. We select the
optimal learning ratio from {1e-3, 3e-4, 1e-4, 3e-5, 1e-5} and �2 reg-
ularization from {1e-3, 3e-4, 1e-4, 3e-5, 1e-5, 3e-6, 1e-6}. (ii) OptFS
hyper-params: we select the optimal regularization penalty � from
{1e-8, 5e-9, 2e-9, 1e-9}, training epoch � from {5, 10, 15}, fnal value
� from {2e+2, 5e+2, 1e+3, 2e+3, 5e+3, 1e+4}. During the re-training
phase, we reuse the optimal learning ratio and �2 regularization and
choose the rewinding epoch �� from {1, 2, · · · ,� −1}. For AutoField
and AdaFS, we select the optimal hyper-parameter from the same
hyper-parameter domain of OptFS, given the original paper does
not provide the hyper-parameter settings. For LPFS and AutoFIS, we
reuse the optimal hyper-parameter mentioned in original papers.

Our implementation4 is based on a public Pytorch library for CTR
prediction5. For other baseline methods, we reuse the ofcial imple-
mentation for the AutoFIS6 [14] method. Due to the lack of available
implementations for the LPFS [8], AdaFS[13] and AutoField[32]
methods, we re-implement them based on the details provided by
the authors and open-source them to beneft future researchers7.

3.2 Overall Performance(RQ1)
In this section, we conduct two studies to separately compare fea-
ture selection methods and feature interaction selection methods
in Section 3.2.1 and 3.2.2. Notes that both these methods can be
viewed as a solution to the feature set optimization problem.

3.2.1 Feature Selection. The overall performance of our OptFS and
other feature selection baseline methods on four diferent backbone
models using three benchmark datasets are reported in Table 2. We
summarize our observation below.

Firstly, our OptFS is efective and efcient compared with other
baseline methods. OptFS can achieve higher AUC with a lower
feature ratio. However, the beneft brought by OptFS difers on
various datasets. On Criteo, OptFS tends to reduce the size of the
feature set. OptFS can reduce 86% to 96% features with improvement
not considered signifcant statistically. On the Avazu and KDD12
datasets, the beneft tends to be both performance boosting and
feature reduction. OptFS can signifcantly increase the AUC by
0.01% to 0.45% compared with the backbone model while using
roughly 10% of the features. Note that the improved performance
is because OptFS considers feature interaction’s infuence during
selection. Meanwhile, other feature selection baselines tend to bring
performance degradation. This is likely because they adopt the
feature feld selection. Such a design will inevitably drop useful
features or keep useless ones.

4https://github.com/fuyuanlyu/OptFS
5https://github.com/rixwew/pytorch-fm
6https://github.com/zhuchenxv/AutoFIS
7https://github.com/fuyuanlyu/AutoFS-in-CTR

3390

https://7https://github.com/fuyuanlyu/AutoFS-in-CTR
https://6https://github.com/zhuchenxv/AutoFIS
https://5https://github.com/rixwew/pytorch-fm
https://4https://github.com/fuyuanlyu/OptFS
https://3http://www.kddcup2012.org/c/kddcup2012-track2/data
https://2http://www.kaggle.com/c/avazu-ctr-prediction
https://1https://www.kaggle.com/c/criteo-display-ad-challenge

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Fuyuan Lyu et al.

Table 2: Performance Comparison Between OptFS and Feature Selection Methods.

Method
FM DeepFM DCN IPNN

AUC↑ Logloss↓ Ratio↓ AUC↑ Logloss↓ Ratio↓ AUC↑ Logloss↓ Ratio↓ AUC↑ Logloss↓ Ratio↓

Cr
ite

o

Backbone
LPFS

AutoField
AdaFS
OptFS

0.8055
0.7888
0.7932
0.7897
0.8060

0.4457
0.4604
0.4567
0.4597
0.4454

1.0000
0.0157
0.0008
1.0000
0.1387

0.8089
0.7915
0.8072
0.8005
0.8100∗

0.4426
0.4579
0.4439
0.4501
0.4415∗

1.0000
0.2415
0.3811
1.0000
0.0422

0.8107
0.7802
0.8113
0.8053
0.8111

0.4410
0.4743
0.4402
0.4472
0.4405

1.0000
0.1177
0.5900
1.0000
0.0802

0.8110
0.7789
0.8115
0.8065
0.8116

0.4407
0.4705
0.4401
0.4448
0.4401

1.0000
0.3457
0.9997
1.0000
0.0719

Av
az
u

Backbone
LPFS

AutoField
AdaFS
OptFS

0.7838
0.7408
0.7680
0.7596
0.7839

0.3788
0.4029
0.3862
0.3913
0.3784

1.0000
0.7735
0.0061
1.0000
0.8096

0.7901
0.7635
0.7870
0.7797
0.7946∗

0.3757
0.3942
0.3773
0.3837
0.3712∗

1.0000
0.9975
1.0000
1.0000
0.8686

0.7899
0.7675
0.7836
0.7693
0.7932∗

0.3755
0.3889
0.3782
0.3954
0.3718∗

1.0000
0.9967
0.9992
1.0000
0.8665

0.7913
0.7685
0.7865
0.7818
0.7950∗

0.3744
0.3883
0.3770
0.3833
0.3709∗

1.0000
0.9967
0.9992
1.0000
0.9118

KD
D
12

 Backbone
LPFS

AutoField
AdaFS
OptFS

0.7783
0.7725
0.7411
0.7418
0.7811∗

0.1566
0.1578
0.1634
0.1644
0.1560∗

1.0000
1.0000
0.0040
1.0000
0.5773

0.7967
0.7964
0.7919
0.7917
0.7988∗

0.1531
0.1532
0.1542
0.1543
0.1527∗

1.0000
1.0000
0.9962
1.0000
0.9046

0.7974
0.7970
0.7943
0.7939
0.7987∗

0.1531
0.1530
0.1536
0.1538
0.1527

1.0000
1.0000
0.8249
1.0000
0.8945

0.7966
0.7967
0.7926
0.7936
0.7976

0.1532
0.1532
0.1541
0.1539
0.1530

1.0000
1.0000
0.8761
1.0000
0.8762

Here ∗ denotes statistically signifcant improvement (measured by a two-sided t-test
with p-value < 0.05) over the best baseline. Bold font indicates the best-performed

method.

Secondly, diferent datasets behave diferently regarding the re-
dundancy of features. For example, on the Criteo dataset, all meth-
ods produce low feature ratios, indicating that this dataset contains
many redundant features. On the other hand, on the Avazu and
KDD12 datasets, all methods produce high feature ratios, suggesting
that these two datasets have lower redundancy. OptFS can better
balance the trade-of between model performance and efciency
compared with other baselines in all datasets.

Finally, feld-level feature selection methods achieve diferent
results on various backbone models. Compared to other deep mod-
els, FM solely relies on the explicit interaction, i.e. inner product. If
one feld z� is zeroed out during the process, all its related interac-
tions will be zero. The other felds are also lured into zero, as their
interaction with feld z� does not bring any information into the
fnal prediction. Therefore, it can be observed that LPFS has a low
feature ratio on Criteo and high feature ratios on Avazu and KDD12
datasets. On the other hand, AutoField generates low feature ratios
(∼0%) on all three datasets. These observations further highlight the
necessity of introducing feature-level granularity into the feature
set optimization problem as OptFS does.

3.2.2 Feature Interaction Selection. In this subsection, we aim to
study the infuence of the OptFS method on feature interaction
selection. The overall performance of our OptFS and AutoFIS on
DeepFM and FM backbone models are reported in Table 3. We
summarize our observation below.

Firstly, compared with backbone models that do not perform any
feature interaction selection, AutoFIS and OptFS achieve higher per-
formance. Such an observation points out the existence of useless
feature interaction on both datasets.

Secondly, the performance of OptFS and AutoFIS difers on difer-
ent models. With fewer features in the feature set, OptFS achieves
nearly the same performance as AutoFIS on FM while performing
signifcantly better on DeepFM. This is because OptFS focuses on
feature-level interactions, which are more fne-grained than the
feld-level interactions adopted by AutoFIS.

Table 3: Performance Comparison Between OptFS and Fea-
ture Interaction Selection Method.

Model Method
Metrics

AUC↑ Logloss↓ Ratio↓

te
o FM

Backbone
AutoFIS
OptFS

0.8055
0.8063
0.8060

0.4457
0.4449
0.4454

1.0000
1.0000
0.1387

Cr
i

DeepFM
Backbone
AutoFIS
OptFS

0.8089
0.8097
0.8100

0.4426
0.4418
0.4415

1.0000
1.0000
0.0422

Backbone 0.7838 0.3788 1.0000

Av
az
u

FM AutoFIS
OptFS

0.7843
0.7839

0.3785
0.3784

1.0000
0.8096

Backbone 0.7901 0.3757 1.0000
DeepFM AutoFIS 0.7928 0.3721 1.0000

OptFS 0.7946∗ 0.3712∗ 0.8686
Here ∗ denotes statistically signifcant improvement (measured by a two-sided t-test
with p-value < 0.05) over the best baseline. Bold font indicates the best-performed
method.

Finally, it is also worth mentioning that OptFS can reduce 13% to
96% of features while AutoFIS is conducted on all possible features
without any reduction.

3.3 Transferability Study(RQ2)
In this subsection, we investigate the transferability of OptFS’s re-
sult. The experimental settings are listed as follows. First, we search
the gating vector g from one model, which we named the source.
Then, we re-train another backbone model given the obtained gat-
ing vector, which we call the target. We study the transferability
between DeepFM, DCN and IPNN backbone models over both
Criteo and Avazu datasets. Based on the results shown in Table 4,
we can easily observe that all transformation leads to performance
degradation. Such degradation is even considered signifcant over
the Avazu dataset. Therefore, feature interaction operations require
diferent feature sets to achieve high performance. We can con-
clude that the selection of the feature set needs to incorporate the

3391

Optimizing Feature Set for Click-Through Rate Prediction WWW ’23, April 30–May 04, 2023, Austin, TX, USA

interaction operation, which further highlights the importance of
selecting both features and their interactions in a unifed, end-to-
end trainable way.

Table 4: Transferability Analysis on Criteo and Avazu.

Target Source
Metrics

AUC↑ Logloss↓ Ratio↓

DeepFM
DeepFM
DCN

0.8100
0.8097

0.4415
0.4419

0.0422
0.0802

Cr
ite

o

IPNN 0.8097 0.4418 0.0719

DCN
DCN

DeepFM
IPNN

0.8111
0.8106
0.8107

0.4405
0.4410
0.4410

0.0802
0.0422
0.0719

IPNN
IPNN
DCN

DeepFM

0.8116
0.8113
0.8114

0.4401
0.4404
0.4403

0.0719
0.0802
0.0422

DeepFM 0.7946∗ 0.3712∗ 0.8686

Av
az
u

DeepFM DCN
IPNN

0.7873
0.7872

0.3754
0.3755

0.8665
0.9118

DCN
DCN

DeepFM
0.7932∗

0.7879
0.3718∗

0.3784
0.8665
0.8686

IPNN 0.7860 0.3762 0.9118
IPNN 0.7950∗ 0.3709∗ 0.9118

IPNN DCN 0.7907 0.3747 0.8665
DeepFM 0.7908 0.3748 0.8686

Here ∗ denotes statistically signifcant improvement (measured by a two-sided t-test
with p-value < 0.05) over the best baseline. Bold font indicates the best-performed
method.

3.4 Ablation Study(RQ3)
In this subsection, we conduct the ablation study over the infu-
ence of the re-training stage, which is detailedly illustrated in Sec-
tion 2.4.2. In Section 2.4.2, we propose a customized initialization
method, namely c.i., during the re-training stage. Here we com-
pare it with the other three methods of obtaining model param-
eters: (i) w.o., which is the abbreviation for without re-training,
directly inherit the model parameters from the searching stage;
(ii) r.i. randomly initialize the model parameters; (iii) l.t.h., which
stands for lottery ticket hypothesis, is a common method for re-
training sparse network [4]. Specifcally, it initializes the model
parameters with the same seed from the searching stage. The ex-
periment is conducted over three backbone models, DeepFM, DCN
and IPNN, over Criteo and Avazu benchmarks. We can make the
following observations based on the result shown in Table 5.

Firstly, we can easily observe that re-training can improve per-
formance regardless of its setting. Without re-training, the neural
network will inherit the sub-optimal model parameters from the
searching stage, which is infuenced by the non-binary element
in the gating vector. Re-training improves the model performance
under the constraint of the gating vector.

Secondly, c.i. constantly outperforms the other two re-training
methods. Such performance gaps are considered signifcant on
all three backbone models over the Avazu dataset. This is likely
because, on the Avazu dataset, the backbone models are usually
trained for only one epoch before they get early-stopped for over-
ftting. Hence, it further increases the importance of initialization
during the re-training stage. This observation validates the neces-
sity of introducing customized initialization in CTR prediction.

Table 5: Ablation Study Regarding the Re-training Stage.

Model Metrics Methods
w.o. r.i. l.t.h. c.i.

DeepFM
AUC↑

Logloss↓
0.8012
0.4686

0.8100 0.8100
0.4416 0.4415

0.8100
0.4415

Cr
ite

o

DCN
AUC↑

Logloss↓
0.8077
0.4522

0.8109 0.8108
0.4407 0.4408

0.8111
0.4405

IPNN
AUC↑

Logloss↓
0.7757
0.4998

0.8113 0.8114
0.4404 0.4403

0.8116
0.4401

DeepFM
AUC↑

Logloss↓
0.6972
0.5017

0.7873 0.7883
0.3754 0.3790

0.7946∗

0.3712∗

Av
az
u

DCN
AUC↑

Logloss↓
0.7122
0.4736

0.7870 0.7858
0.3801 0.3764

0.7932∗

0.3718∗

IPNN
AUC↑

Logloss↓
0.7560
0.4411

0.7912 0.7910
0.3745 0.3745

0.7950∗

0.3709∗

Here ∗ denotes statistically signifcant improvement (measured by a two-sided t-test
with p-value < 0.05) over the best baseline. Bold font indicates the best-performed
method. Here w.o. stands for without re-training, r.i. stands for re-training with random
initialization, l.t.h. stands for initialization using lottery ticket hypothesis [4], c.i. stands
for re-training with customized initialization, as previously discussed in Section 2.4.

3.5 Efciency Analysis(RQ4)
In addition to model performance, efciency is vital when deploying
the CTR prediction model in reality. In this section, we investigate
the time and space complexity of OptFS.

Figure 4: Inference Time on Criteo and Avazu Dataset. The
Y-axis represents the infuence time, measured by ms

(a) DeepFM (b) DCN

Figure 5: Visualization of efciency-efectiveness trade-of
on Criteo datasets. The closer to the top-left the better.

3.5.1 Time Complexity. The inference time is crucial when deploy-
ing the model into online web systems. We defne inference time
as the time for inferencing one batch. The result is obtained by
averaging the inference time over all batches on the validation set.

As shown in Figure 4, OptFS achieves the least inference time.
This is because the feature set obtained by OptFS usually has the
least features. Meanwhile, AdaFS requires the longest inference

3392

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Fuyuan Lyu et al.

(a) Mutual Info (b) DeepFM (c) DCN (d) IPNN

Figure 6: A Case Study of OptFS output on Criteo. In all subfgures, the X-axis indicates the feld identifers. Subfgure (a) plots
the mutual information scores, while subfgures (b), (c) and (d) plot the feature set ratio of OptFS on DeepFM, DCN and IPNN.

time, even longer than the backbone model. This is because it needs
to determine whether keep or drop each feature dynamically during
run-time.

3.5.2 Space Complexity. We plot the Feature Ratio-AUC curve of
the DeepFM, DCN and IPNN model on the Criteo datasets in Figure
5, which refects the relationship between the space complexity of
the feature set and model performance. Notes that LPFS, AutoField
and OptFS are methods that primarily aim to improve model per-
formance. These methods have no guarantee over the fnal feature
ratios. Hence we only plot one point for each method in the fgure.

From Figure 5 we can make the following observations: (i) OptFS
outperforms all other baselines with the highest AUC score and the
least number of features. (ii) The model performance of AutoField
is comparable with OptFS and Backbone. However, given it only
selects the feature set on feld-level, its feature ratio tends to be
higher than OptFS. (iii) The performance of LPFS is much lower
than other methods.

3.6 Case Study(RQ5)
This subsection uses a case study to investigate the optimal feature
set obtained from OptFS. In Figure 6, we plot the mutual information
with the feature ratio on each feld. For feld z� = {x�� } and ground
truth labels y (� ∈ y), the mutual information between them is
defned as: ∑ ∑
MI(x�� , y) = − P(�) log P(�) + P(x�� , �) log P(� |x��), (17)

where the frst term is the marginal entropy and the second term
is the conditional entropy of ground truth labels y given feld z� =
{x�� }. Note that felds with high mutual information scores are
more informative (hence more important) to the prediction.

As a case study, we investigate the feature ratio for each feld,
shown in Figure 6. We select the result from DeepFM, DCN and
IPNN on the Criteo dataset. Figure 6(a) shows the mutual informa-
tion scores of each feld, which represents how informative each
feld is in predicting the label. Figure 6(b), 6(c) and 6(d) shows the
feature ratio given each felds. As can be seen, felds with higher
mutual information scores are likely to keep more features in the
feature set, which indicates that OptFS obtains the optimal feature
set from the feld perspective.

4 RELATED WORK
In this section, we review the related work. Optimizing feature
set is related two topics, feature selection and feature interaction
selection. The training scheme of proposed OptFS is related to
learning by continuation. Thus we summarize the related work in
following two subsection.

4.1 Feature and Feature Interaction Selection
Feature selection is a key component for prediction task [3]. Several
methods have been proposed [8, 13, 17, 30, 32] to conduct feature
selection for CTR models. Traditional methods [17, 30] exploit the
statistical metrics of diferent feature felds and conduct feature feld
selection. Inspired by neural architecture search (NAS) [15, 18] and
smoothed-l0 optimization respectively, AutoField [32] and LPFS [8]
determine the selection of feature felds automatically. AdaFS [13]
proposes a novel controller network to decide feature felds for
each sample, which fts the dynamic recommendation. Feature
interaction selection is often employed to enhance the prediction.
Some methods [12, 14] model the problem as NAS to exploit the
feld-level interaction space. OptInter [20] investigates the way to
do feature interaction. AutoCross [19] targets on tabular data and
iterative fnds feature interaction based on locally optimized feature
set. We frst highlight the feature set optimization problem in CTR
prediction, and OptFS is diferent from previous methods by solving
both problems in a unifed manner.

4.2 Learning by Continuation
Continuation methods are commonly used to approximate intractable
optimization problems by gradually increasing the difculty of the
underlying objective. By adopting gradual relaxations to binary
problems, gumbel-softmax [11] is used to back-propagate errors
during the architecture search [33] and spatial feature sparsifca-
tion [35]. Other methods [16, 28, 36] introduce continuous sparsif-
cation framework to speed up neural network pruning and ticket
search. OptFS adopts the learning-by-continuation scheme to efec-
tively explore the huge feature-level search space.

5 CONCLUSION
This paper frst distinguishes the feature set optimization problem.
Such a problem unifes two mutually infuencing questions: the
selection of features and feature interactions. To our knowledge, no
previous work considers these two questions uniformly. Besides,
we also upgrade the granularity of the problem from feld-level to
feature-level. To solve such the feature set optimization problem
efciently, we propose a novel method named OptFS, which as-
signs a gating value to each feature for its usefulness and adopt a
learning-by-continuation approach for efcient optimization. Ex-
tensive experiments on three large-scale datasets demonstrate the
superiority of OptFS in model performance and feature reduction.
Several ablation studies also illustrate the necessity of our design.
Moreover, we also interpret the obtained result on feature felds and
their interactions, highlighting that our method properly solves the
feature set optimization problem.

3393

Optimizing Feature Set for Click-Through Rate Prediction WWW ’23, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
We explicitly want to thank Chaohua Yang for his help regarding
the experiment.

REFERENCES
[1] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. 2013. Representation

Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell.
35, 8 (2013), 1798–1828. https://doi.org/10.1109/TPAMI.2013.50

[2] Olivier Chapelle, Eren Manavoglu, and Romer Rosales. 2015. Simple and Scalable
Response Prediction for Display Advertising. ACM Trans. Intell. Syst. Technol. 5,
4 (dec 2015), 61.

[3] Jérémie Donà and Patrick Gallinari. 2021. Diferentiable Feature Selection, A
Reparameterization Approach. In Machine Learning and Knowledge Discovery
in Databases. Research Track - European Conference, ECML PKDD 2021 (Lecture
Notes in Computer Science, Vol. 12977). Springer, Bilbao, Spain, 414–429. https:
//doi.org/10.1007/978-3-030-86523-8_25

[4] Jonathan Frankle and Michael Carbin. 2019. The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks. In 7th International Conference on
Learning Representations, ICLR 2019. OpenReview.net, New Orleans, LA, USA.

[5] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difculty of training
deep feedforward neural networks. In 13th International Conference on Artifcial
Intelligence and Statistics, AISTATS 2010 (JMLR Proceedings, Vol. 9). JMLR.org,
Italy, 249–256.

[6] Huifeng Guo, Wei Guo, Yong Gao, Ruiming Tang, Xiuqiang He, and Wenzhi
Liu. 2021. ScaleFreeCTR: MixCache-based Distributed Training System for CTR
Models with Huge Embedding Table. In SIGIR ’21: The 44th International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM,
Virtual Event, Canada, 1269–1278. https://doi.org/10.1145/3404835.3462976

[7] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. In
26th International Joint Conference on Artifcial Intelligence, IJCAI 2017. ijcai.org,
Melbourne, Australia, 1725–1731.

[8] Yi Guo, Zhaocheng Liu, Jianchao Tan, Chao Liao, Daqing Chang, Qiang
Liu, Sen Yang, Ji Liu, Dongying Kong, Zhi Chen, and Chengru Song. 2022.
LPFS: Learnable Polarizing Feature Selection for Click-Through Rate Predic-
tion. CoRR abs/2206.00267 (2022). https://doi.org/10.48550/arXiv.2206.00267
arXiv:2206.00267

[9] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. 2009. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition. Springer,
Berlin, Germany. https://doi.org/10.1007/978-0-387-84858-7

[10] Sergey Iofe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. In 32nd International
Conference on Machine Learning, ICML 2015 (JMLR Workshop and Conference
Proceedings, Vol. 37). JMLR.org, France, 448–456.

[11] Eric Jang, Shixiang Gu, and Ben Poole. 2017. Categorical Reparameterization with
Gumbel-Softmax. In 5th International Conference on Learning Representations,
ICLR 2017. OpenReview.net, Toulon, France.

[12] Farhan Khawar, Xu Hang, Ruiming Tang, Bin Liu, Zhenguo Li, and Xiuqiang He.
2020. AutoFeature: Searching for Feature Interactions and Their Architectures
for Click-through Rate Prediction. In CIKM ’20: The 29th ACM International
Conference on Information and Knowledge Management. ACM, Virtual Event,
Ireland, 625–634. https://doi.org/10.1145/3340531.3411912

[13] Weilin Lin, Xiangyu Zhao, Yejing Wang, Tong Xu, and Xian Wu. 2022. AdaFS:
Adaptive Feature Selection in Deep Recommender System. In KDD ’22: The
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM,
Washington, DC, USA, 3309–3317. https://doi.org/10.1145/3534678.3539204

[14] Bin Liu, Chenxu Zhu, Guilin Li, Weinan Zhang, Jincai Lai, Ruiming Tang, Xi-
uqiang He, Zhenguo Li, and Yong Yu. 2020. AutoFIS: Automatic Feature Interac-
tion Selection in Factorization Models for Click-Through Rate Prediction. In KDD
’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Min-
ing. ACM, Virtual Event, CA, USA, 2636–2645. https://doi.org/10.1145/3394486.
3403314

[15] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Diferentiable
Architecture Search. In 7th International Conference on Learning Representations,
ICLR 2019. OpenReview.net, USA.

[16] Junjie Liu, Zhe Xu, Runbin Shi, Ray C. C. Cheung, and Hayden Kwok-Hay So.
2020. Dynamic Sparse Training: Find Efcient Sparse Network From Scratch
With Trainable Masked Layers. In 8th International Conference on Learning Rep-
resentations, ICLR 2020. OpenReview.net, Addis Ababa, Ethiopia.

[17] Qiang Liu, Zhaocheng Liu, Haoli Zhang, Yuntian Chen, and Jun Zhu. 2021. Mining
Cross Features for Financial Credit Risk Assessment. In CIKM ’21: The 30th
ACM International Conference on Information and Knowledge Management. ACM,
Virtual Event, Queensland, Australia, 1069–1078. https://doi.org/10.1145/3459637.
3482371

[18] Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. 2018. Neural
Architecture Optimization. In 31st Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018. Curran Associates, Montréal, Canada,
7827–7838.

[19] Yuanfei Luo, Mengshuo Wang, Hao Zhou, Quanming Yao, Wei-Wei Tu, Yuqiang
Chen, Wenyuan Dai, and Qiang Yang. 2019. AutoCross: Automatic Feature
Crossing for Tabular Data in Real-World Applications. In 25th ACM International
Conference on Knowledge Discovery & Data Mining, KDD 2019. ACM, Anchorage,
AK, USA, 1936–1945. https://doi.org/10.1145/3292500.3330679

[20] Fuyuan Lyu, Xing Tang, Huifeng Guo, Ruiming Tang, Xiuqiang He, Rui Zhang,
and Xue Liu. 2022. Memorize, Factorize, or be Naive: Learning Optimal Feature
Interaction Methods for CTR Prediction. In 38th IEEE International Conference on
Data Engineering, ICDE 2022. IEEE, Kuala Lumpur, Malaysia, 1450–1462. https:
//doi.org/10.1109/ICDE53745.2022.00113

[21] Fuyuan Lyu, Xing Tang, Hong Zhu, Huifeng Guo, Yingxue Zhang, Ruiming
Tang, and Xue Liu. 2022. OptEmbed: Learning Optimal Embedding Table for
Click-through Rate Prediction. CoRR abs/2208.04482 (2022).

[22] Ze Meng, Jinnian Zhang, Yumeng Li, Jiancheng Li, Tanchao Zhu, and Lifeng Sun.
2021. A General Method For Automatic Discovery of Powerful Interactions In
Click-Through Rate Prediction. In SIGIR ’21: The 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, Canada,
1298–1307.

[23] B. K. Natarajan. 1995. Sparse Approximate Solutions to Linear Systems. SIAM J.
Comput. 24, 2 (1995), 227–234. https://doi.org/10.1137/S0097539792240406

[24] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-Based Neural Networks for User Response Prediction. In 2016 IEEE
16th International Conference on Data Mining (ICDM). IEEE, Barcelona, Spain,
1149–1154. https://doi.org/10.1109/ICDM.2016.0151

[25] Yanru Qu, Bohui Fang, Weinan Zhang, Ruiming Tang, Minzhe Niu, Huifeng
Guo, Yong Yu, and Xiuqiang He. 2019. Product-Based Neural Networks for User
Response Prediction over Multi-Field Categorical Data. ACM Trans. Inf. Syst. 37,
1 (2019), 5:1–5:35.

[26] Stefen Rendle. 2010. Factorization Machines. In ICDM 2010, The 10th IEEE Inter-
national Conference on Data Mining. IEEE Computer Society, Sydney, Australia,
995–1000.

[27] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In 16th International Con-
ference on World Wide Web, WWW 2007. ACM, Banf, Alberta, Canada, 521–530.

[28] Pedro Savarese, Hugo Silva, and Michael Maire. 2020. Winning the Lottery with
Continuous Sparsifcation. In Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020. Curran Associates, virtual.

[29] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock.
2002. Methods and metrics for cold-start recommendations. In SIGIR 2002: the
25th Annual International Conference on Research and Development in Information
Retrieval. ACM, Tampere, Finland, 253–260. https://doi.org/10.1145/564376.
564421

[30] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267–288.

[31] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & Cross Network
for Ad Click Predictions. In ADKDD’17 (ADKDD’17). Association for Computing
Machinery, Canada, Article 12, 7 pages.

[32] Yejing Wang, Xiangyu Zhao, Tong Xu, and Xian Wu. 2022. AutoField: Automating
Feature Selection in Deep Recommender Systems. In WWW ’22: The ACM Web
Conference 2022. ACM, Virtual Event, Lyon, France, 1977–1986. https://doi.org/
10.1145/3485447.3512071

[33] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming
Wu, Yuandong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. FBNet:
Hardware-Aware Efcient ConvNet Design via Diferentiable Neural Architecture
Search. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019.
Computer Vision Foundation / IEEE, Long Beach, CA, USA, 10734–10742 pages.
https://doi.org/10.1109/CVPR.2019.01099

[34] Yuexiang Xie, Zhen Wang, Yaliang Li, Bolin Ding, Nezihe Merve Gürel, Ce Zhang,
Minlie Huang, Wei Lin, and Jingren Zhou. 2021. FIVES: Feature Interaction Via
Edge Search for Large-Scale Tabular Data. In KDD ’21: The 27th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining. ACM, Virtual Event, Singapore,
3795–3805. https://doi.org/10.1145/3447548.3467066

[35] Zhenda Xie, Zheng Zhang, Xizhou Zhu, Gao Huang, and Stephen Lin. 2020.
Spatially Adaptive Inference with Stochastic Feature Sampling and Interpolation.
In Computer Vision - ECCV 2020 - 16th European Conference (Lecture Notes in
Computer Science, Vol. 12346). Springer, Glasgow, UK, 531–548. https://doi.org/
10.1007/978-3-030-58452-8_31

[36] Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael Maire. 2021. Grow-
ing Efcient Deep Networks by Structured Continuous Sparsifcation. In 9th
International Conference on Learning Representations, ICLR 2021. OpenReview.net,
Virtual Event, Austria.

3394

https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1007/978-3-030-86523-8_25
https://doi.org/10.1007/978-3-030-86523-8_25
https://doi.org/10.1145/3404835.3462976
https://doi.org/10.48550/arXiv.2206.00267
https://arxiv.org/abs/2206.00267
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1145/3340531.3411912
https://doi.org/10.1145/3534678.3539204
https://doi.org/10.1145/3394486.3403314
https://doi.org/10.1145/3394486.3403314
https://doi.org/10.1145/3459637.3482371
https://doi.org/10.1145/3459637.3482371
https://doi.org/10.1145/3292500.3330679
https://doi.org/10.1109/ICDE53745.2022.00113
https://doi.org/10.1109/ICDE53745.2022.00113
https://doi.org/10.1137/S0097539792240406
https://doi.org/10.1109/ICDM.2016.0151
https://doi.org/10.1145/564376.564421
https://doi.org/10.1145/564376.564421
https://doi.org/10.1145/3485447.3512071
https://doi.org/10.1145/3485447.3512071
https://doi.org/10.1109/CVPR.2019.01099
https://doi.org/10.1145/3447548.3467066
https://doi.org/10.1007/978-3-030-58452-8_31
https://doi.org/10.1007/978-3-030-58452-8_31
https://OpenReview.net
https://OpenReview.net
https://OpenReview.net
https://OpenReview.net
https://JMLR.org
https://ijcai.org
https://JMLR.org
https://OpenReview.net

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Fuyuan Lyu et al.

[37] Zhao-Yu Zhang, Xiang-Rong Sheng, Yujing Zhang, Biye Jiang, Shuguang Han, [38] Jieming Zhu, Jinyang Liu, Shuai Yang, Qi Zhang, and Xiuqiang He. 2021. Open
Hongbo Deng, and Bo Zheng. 2022. Towards Understanding the Overftting Phe- Benchmarking for Click-Through Rate Prediction. In 30th ACM International
nomenon of Deep Click-Through Rate Prediction Models. CoRR abs/2209.06053 Conference on Information & Knowledge Management. Association for Computing
(2022). https://doi.org/10.48550/arXiv.2209.06053 arXiv:2209.06053 Machinery, Australia, 2759–2769.

3395

https://doi.org/10.48550/arXiv.2209.06053
https://arxiv.org/abs/2209.06053

	Abstract
	1 Introduction
	2 OptFS
	2.1 Problem Formulation
	2.2 Feature Selection
	2.3 Feature Interaction Selection
	2.4 Learning by Continuation

	3 experiment
	3.1 Experiment Setup
	3.2 Overall Performance(RQ1)
	3.3 Transferability Study(RQ2)
	3.4 Ablation Study(RQ3)
	3.5 Efficiency Analysis(RQ4)
	3.6 Case Study(RQ5)

	4 related work
	4.1 Feature and Feature Interaction Selection
	4.2 Learning by Continuation

	5 conclusion
	Acknowledgments
	References

