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ABSTRACT 
Click-through prediction (CTR) models transform features into la-
tent vectors and enumerate possible feature interactions to improve 
performance based on the input feature set. Therefore, when select-
ing an optimal feature set, we should consider the infuence of both 
features and their interaction. However, most previous works focus 
on either feature feld selection or only select feature interaction 
based on the fxed feature set to produce the feature set. The former 
restricts search space to the feature feld, which is too coarse to 
determine subtle features. They also do not flter useless feature 
interactions, leading to higher computation costs and degraded 
model performance. The latter identifes useful feature interaction 
from all available features, resulting in many redundant features in 
the feature set. In this paper, we propose a novel method named 
OptFS to address these problems. To unify the selection of features 
and their interaction, we decompose the selection of each feature 
interaction into the selection of two correlated features. Such a 
decomposition makes the model end-to-end trainable given various 
feature interaction operations. By adopting feature-level search 
space, we set a learnable gate to determine whether each feature 
should be within the feature set. Because of the large-scale search 
space, we develop a learning-by-continuation training scheme to 
learn such gates. Hence, OptFS generates the feature set containing 
features that improve the fnal prediction results. Experimentally, 
we evaluate OptFS on three public datasets, demonstrating OptFS 
can optimize feature sets which enhance the model performance 
and further reduce both the storage and computational cost. 
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1 INTRODUCTION 
Click-through rate prediction has been a crucial task in real-world 
commercial recommender systems and online advertising systems. 
It aims to predict the probability of a certain user clicking a rec-
ommended item (e.g. movie, advertisement) [2, 27]. The standard 
input for CTR prediction consists mainly of a large set of categori-
cal features organized as feature felds. For example, every sample 
contains a feature feld gender in CTR prediction, and the feld gen-
der may include three feature values, male, female and unknown. 
To avoid ambiguity, we term feature values as features hereafter. 
General CTR prediction models frst map each feature in the feature 
set into a unique real-valued dense vector through embedding ta-
ble [21]. Then these vectors are fed into the feature interaction layer 
to improve the prediction by explicitly modelling low-order feature 
interaction by enumerating feature set [22]. The fnal prediction 
of the classifer is made upon the feature embedding and feature 
interactions, which are both heavily infuenced by the input feature 
set. The general framework is shown in Figure 1. Hence, the input 
feature set plays an important role in CTR prediction. 

Blindly inputting all available features into the feature set is nei-
ther efective nor efcient. From the view of efectiveness, certain 
features can be detrimental to model performance. Firstly, these 
features themselves may only introduce extra learnable parameters, 
making the prediction model prone to overftting [1, 9]. Secondly, 
certain useless interactions introduced by these features also bring 
unnecessary noise and complicate the training process [14], which 
degrades the fnal prediction. Notice that these two factors are 
closely related when selecting the feature set. If one feature x� is 
fltered out from the set, all its related interactions ⟨x� , ·⟩ should be 
excluded in the model as well. Correspondingly, informative inter-
actions ⟨x� , x� ⟩ is a strong indicator to keep x� in the feature set [19]. 
From the view of efciency, introducing redundant features into a 
feature set can be inefcient in both storage space and computation 
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cost. As the embedding table dominates the number of parameters 
in CTR models [6], a feature set without redundant features will 
greatly decrease the size of the models. Moreover, a feature set 
with useful features can zero out the computation of many useless 
feature interaction, which greatly reduce the computation cost in 
practice. An optimal feature set should keep features considering 
both efectiveness and efciency. 

Eforts have been made to search for an optimal feature set 
from two aspects. Firstly, Several methods produce the feature set 
based on feature selection. Because of the large-scale CTR dataset, 
some methods [8, 30, 32] focus on the feld level, which results in 
hundreds of felds instead of millions of features. However, the feld 
level is too coarse to fnd an optimal feature set. For instance, the 
feature feld ID contains user/item feature id in real datasets. The 
id of certain cold users/items might be excluded from the feature 
set due to the sparsity problem [29], which is difcult to handle at 
the feld level. Besides, these methods [8, 13] fail to leverage the 
infuence of feature interaction, which is commonly considered an 
enhancement for the model performance [20, 38]. Secondly, there is 
also some weakness concerning feature interaction methods, which 
implicitly produce the feature set. On the one hand, some feature 
interaction selection methods [12, 14, 20], inspired by the ideas of 
neural architecture search [15, 18], tend to work on a fxed subset of 
input feature set, which commonly includes the redundant features. 
On the other hand, some method [19] constructs a locally optimal 
feature set to generate feature interaction in separated stages, which 
requires many handcraft rules to guide the search scheme. Given 
that many operations of feature interactions are proposed [7, 24, 31], 
searching an optimal feature set with these operations in a unifed 
way can reduce useless feature interaction. As discussed, optimizing 
the feature set incorporated with the selection of both feature and 
feature interaction is required. 

In this paper, we propose a method, Optimizing Feature Set 
(OptFS), to address the problem of searching the optimal feature 
set. There are two main challenges for our OptFS. The frst chal-
lenge is how to select the feature and its interaction jointly, given 
various feature interaction operations. As discussed above, an op-
timal feature set should exclude features that introduce useless 
interaction in models. We tackle this challenge by decomposing 
the selection of each feature interaction into the selection of two 
correlated features. Therefore, OptFS reduces the search space of 
feature interaction and trains the model end-to-end, given various 
feature interaction operations. The second challenge is the number 
of features in large-scale datasets. Notice that the possible number 
of features considered in our research could be 106, which is in-
credibly larger than 100 feature felds in previous works [8, 32]. To 
navigate in the large search space, we introduce a learnable gate 
for each feature and adopt the learning-by-continuation [16, 28, 36] 
training scheme. We summarize our major contributions as follows: 

• This paper frst distinguishes the optimal feature set problem, 
which focuses on the feature level and considers the efectiveness 
of both feature and feature interaction, improving the model 
performance and computation efciency. 

• We propose a novel method named OptFS that optimizes the 
feature set. Developing an efcient learning-by-continuation 
training scheme, OptFS leverages feature interaction operations 

Figure 1: Overview of the general CTR framework. 

trained together with the prediction model in an end-to-end 
manner. 

• Extensive experiments are conducted on three large-scale public 
datasets. The experimental results demonstrate the efectiveness 
and efciency of the proposed method. 
We organize the rest of the paper as follows. In Section 2, we 

formulate the CTR prediction and feature selection problem and 
propose a simple but efective method OptFS. Section 3 details 
the experiments. In Section 4, we briefy introduce related works. 
Finally, we conclude this paper in Section 5. 

2 OPTFS 
In this section, we will frst distinguish the feature set optimization 
problem in Section 2.1 and detail how OptFS conduct feature selec-
tion in Section 2.2. Then, we will illustrate how OptFS infuences 
feature interaction selection in Section 2.3. Finally, we will illustrate 
the learning-by-continuation method in Section 2.4. 

2.1 Problem Formulation 
In this subsection, we provide a formulation of the feature set 
optimization problem. Usually, features that beneft the accurate 
prediction are considered useful in CTR models. In our setting, we 
represent all possible features as X = {x1, x2, · · · , x� }. x� is a one-
hot representation, which is very sparse and high-dimensional. As 
previously discussed, the feature set optimization problem aims to 
determine the useful features among all possible ones, which can 
be defned as fnding an optimal feature set Xg ⊂ X. This can be 
formulated as follows: 
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min L(D |W), D = {Xg, Y},
W 

� .� .∀x ∈ Xg, L(Xg) > L(Xg − {x}), (1) 

∀x ∉ Xg, L(Xg) ≥ L(Xg + {x}), 
where L denotes the loss function, W denotes the model parame-
ters, and Y denotes the corresponding labels. 

2.2 Feature Selection 
Each feld z� contains a proportion of all possible features, denoted 
as: 

z� = {x�� }, 1 ≤ �� ≤ �, (2) 

which indicates that the relationship between feld and feature is a 
one-to-many mapping. In practice, the number of feld � is much 
smaller than that of feature �. For instance, online advertisement 
systems usually have � ≤ 100 and � ≈ 106. So the input of CTR 
models can be rewritten as follows from both feature and feld 
perspectives: 

z = [z1, z2, · · · , z� ] = [x�1 , x�2 , · · · , x�� ], (3) 

where the second equal sign means that for input z, the correspond-
ing feature for feld z� is x�� as shown in Equation 2. 

We usually employ embedding tables to convert z� s into low-
dimensional and dense real-value vectors. This can be formulated 
as e� = E × z� = E × x�� , 1 ≤ � ≤ �, 1 ≤ �� ≤ �, where E ∈ R�×� 

is the embedding table, � is the number of feature values and � is 
the size of embedding. Then embeddings are stacked together as a 
embedding vector e = [e1, e2, · · · , e� ]. 

In our work, we propose feature-level selection. Instead of doing 
feld-level selection, we formulate selection as assigning a binary 
gate g�� ∈ {0, 1} for each feature embedding e�� . After selection, 
the feature embeddings can be formulated as follows: 

ge ⊙ (E × x�� ). (4)
�� 

= g�� ⊙ e�� = g�� 

When g�� = 1, feature x�� is in the optimal feature set Xg and 
vice versa. Notice that previous work [8, 30, 32] assigns feld-level 
feature selection. This means that g�� ≡ g� ∈ {0, 1} for each feld 
�� , indicating the keep or drop of all possible features {x�� } in 
corresponding feld. 

Then, these embeddings are stacked together as a feature-selected 
g g ggembedding vector e = [e , e , · · · , e ]. The fnal prediction can 
�1 �2 �� 

be formulated as follows: 

�̂ = F(g ⊙ E × x|W) = F(Eg × x|W), (5) 

where g ∈ {0, 1}� refers to gating vectors indicating whether 
certain feature is selected or not, Eg = g ⊙ E indicates the feature-
selected embedding tables. The Eg can also be viewed as the feature 
set Xg after transformation from the embedding table, denoted as 
Eg = E × Xg. 

2.3 Feature Interaction Selection 
The feature interaction selection aims to select benefcial feature 
interaction for explicitly modelling [14, 20]. The feature interaction 
layer will be performed based on e in mainstream CTR models. 
There are several types of feature interaction in previous study [12], 

e.g. inner product [7]. The interaction between two features e� and 
e� can be generally represented as: 

v(�, � ) = O(e� , e� ), (6) 

where O, as the interaction operation, can vary from a single layer 
perceptron to cross layer[31]. The feature interaction selection can 
be formulated as assigning g 

′ 
for each feature interaction. All (�, � )

feature interactions can be aggregated together for fnal prediction: 
g�̂ = H((g 

′
⊙ v) ⊕ G(eg)) = H(v 

′
⊕ G(eg)), (7) 

where symbol ⊕ denotes the concatenation operation, G(·) denotes 
the transformation function from embedding space to feature in-
teraction space, such as MLP [7, 31] or null function [24]. H(·) 
represents the prediction function. The combinations of G(·), O(·) 
and H(·) in mainstream models are summarized in Table 1. 

Table 1: Summary of G(·), O(·) and H(·) in various models 

Model G(·) O(·) H(·) 
FM [26] null inner product null 

DeepFM [7] MLP inner product average 
DCN [31] MLP cross network average 
IPNN [24] null inner product MLP 
OPNN [24] null outer product MLP 
PIN [25] null MLP MLP 

In reality, a direct way to explore all possible feature interaction 
is introducing a feature interaction matrix {g 

′

(�� ,� � ) } for 2nd-order 
feature interaction {x�� }. But it is impossible as we would , x� � 
have �� 

2 ≈ 1012 gate variables. To efciently narrow down such a 
large space, previous works [12, 14, 20] restrict the search space to 
feature feld interaction, reducing the number of variables to �� 

2 ≈ 
1000. This can be formulated as g 

′ ≡ g 
′ 

. However, such(�, � ) (�� ,� � )
relaxation may not be able to distinguish the diference between 
useful and useless feature interaction within the same feld. As it has 
been proven that informative interaction between features tends to 
come from the informative lower-order ones [34], we decompose 
the feature interaction as follows: 

′ 
g(�� ,� � ) = g�� × g� � , (8) 

which indicates that the feature interaction is only deemed useful 
when both features are useful. An illustration of the decomposition 
is shown in Figure 2. Hence, the fnal prediction can be written as: 

�̂ = H((g × g ⊙ v) ⊕ G(g ⊙ e)), (9) 

which means that the gating vector g that selects features can also 
select the feature interaction given O(·). Such a design can reduce 
the search space and obtain the optimal feature set in an end-to-end 
manner. 

2.4 Learning by Continuation 
Even though the search space has been narrowed down from �� 

2 +� 
to � in Section 2.3, we still need to determine whether to keep 
or drop each feature in the feature set. This can be formulated 
as a l0 normalization problem. However, binary gate vector � 
is hard to compute valid gradient. Moreover, l0 optimization is 
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Figure 2: The Overview of OptFS. 

known as a NP-hard problem [23]. To efciently train the entire 
model, we introduce a learning-by-continuation training scheme. 
Such a training scheme has proven to be an efcient method for 
approximating l0 normalization [28], which correlates with our 
goal. 

The learning-by-continuation training scheme consists of two 
parts: the searching stage that determines the gating vector g and 
the rewinding stage that determines the embedding table e and 
other parameters W. We will introduce them separately in the 
following sections. 

2.4.1 Searching. To efciently optimize the feature set with feature-
level granularity, we introduce a continual gate g� ∈ R� . During 
the searching stage, we introduce an exponentially-increased tem-
perature value � to approximate �0 normalization. Specifcally, the 
actual gate g is computed as: 

� (g� × �) 
= �� /� g = , � (10)(0)

� (g )� 

(0)where g is the initial value of the continual gate g� , � is the � 
1sigmoid function � (�) = applied element-wise, � is the cur-1+� −� 

rent training epoch number, � is the total training epoch and � 
is the fnal value of � after training for � epochs. This would al-
low the continuous gating vector g� to receive valid gradients in 
early stages yet increasingly approximate binary gate as the epoch 
number � grows. An illustration of Equation 10 is shown in Figure 
3(a). 

The fnal prediction is calculated based on Equation 9. The cross-
entropy loss (i.e. log-loss) is adopted for each sample: 

CE(�, �̂) = � log(�̂) + (1 − �) log(1 − �̂), (11) 

where � is the ground truth of user clicks. We summarize the fnal 
accuracy loss as follows: ∑ 1 

LCE (D |{E, W}) = − CE(�, F(E × x|W)), (12)|D | (x,� ) ∈D 

where D is the training dataset and W is network parameters except 
the embedding table E. Hence, the fnal training objective becomes: 

min LCE (D |{g� ⊙ E, W}) + �∥g∥1, (13) 
g� ,E,W 

where � is the regularization penalty, ∥·∥1 indicates the l1 norm to 
encourage sparsity. Here we restate l0 norm to l1 norm given the 
fact that ∥g∥0 = ∥g∥1 for binary g. 

After training � epochs, the fnal gating vector g is calculated 
through a unit-step function as follows:(

0, g� ≤ 0 
g = (14)

1, otherwise 
. 

Such a unit step function is also visualized in Figure 3(b). 

(a) Searching Stage (b) Re-training Stage 

Figure 3: Visualization of gating vector � during searching 
and retraining stages. 

2.4.2 Retraining. In the searching stage, all possible features are 
fed into the model to explore the optimal feature set Xg. Thus, the 
useless features might hurt the model’s performance. To address 
this problem, we need to retrain the model after obtaining the 
optimal feature set Xg. 

After determining the gating vector g, we retrain the model pa-
rameters E and W as the corresponding values at �� epoch, which 
is carefully tuned in our setting. This is because most CTR mod-
els early stopped in several epochs, making them more sensitive 
towards initialization and prone to overftting [37]. The fnal pa-
rameters E and W are trained as follows: 

min LCE (D |{g ⊙ E, W}) . (15)
E,W 

The overall process of our model is summarized in Algorithm 1. 

Algorithm 1 The OptFS Algorithm 

Require: training dataset D, initialization epoch �� , total epoch � 
Ensure: gating vector g, model parameters {E, W} 
1: ## Searching ## 
2: t=0 
3: while t < T do 
4: t = t + 1 
5: while D is not fully iterated do 
6: Sample a mini-batch from the training dataset 
7: {E� , W� }, g = Searching(D) ⊲ Equation 13 
8: end while 
9: if � == �� then 
10: {Ê, Ŵ } ⇐ {E� , W� }
11: end if 
12: end while 
13: g = Discretization({g� }) ⊲ Equation 14 
14: ## Retraining## 

ˆ15: Retrain {E, W} given g with {Ê, W} as initialization ⊲ 
Equation 15 
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3 EXPERIMENT 
In this section, to comprehensively evaluate our proposed method, 
we design experiments to answer the following research questions: 
• RQ1: Could OptFS achieve superior performance compared with 
mainstream feature (interaction) selection methods? 

• RQ2: How does the end-to-end training scheme infuence the 
model performance? 

• RQ3: How does the re-training stage infuence the performance? 
• RQ4: How efcient is OptFS compared to other feature (interac-
tion) selection methods? 

• RQ5: Does OptFS select the optimal features? 

3.1 Experiment Setup 
3.1.1 Datasets. We conduct our experiments on three public real-
world datasets. We describe all datasets and the pre-processing 
steps below. 

Criteo1 dataset consists of ad click data over a week. It con-
sists of 26 categorical feature felds and 13 numerical feature felds. 
Following the best practice [38], we discretize each numeric value 
� to ⌊log2 (�)⌋, if � > 2; � = 1 otherwise. We replace infrequent 
categorical features with a default "OOV" (i.e. out-of-vocabulary) 
token, with min_count=10. 

Avazu2 dataset contains 10 days of click logs. It has 24 felds with 
categorical features. Following the best practice [38], we remove 
the instance_id feld and transform the timestamp feld into three 
new felds: hour, weekday and is_weekend. We replace infrequent 
categorical features with the "OOV" token, with min_count=10. 

KDD123 dataset contains training instances derived from search 
session logs. It has 11 categorical felds, and the click feld is the 
number of times the user clicks the ad. We replace infrequent fea-
tures with an "OOV" token, with min_count=10. 

3.1.2 Metrics. Following the previous works [7, 26], we use the 
common evaluation metrics for CTR prediction: AUC (Area Under 
ROC) and Log loss (cross-entropy). Note that 0.1% improvement 
in AUC is considered signifcant [7, 24]. To measure the size of the 
feature set, we normalize it based on the following equation: 

Ratio = #Remaining Features/�. (16) 

3.1.3 Baseline Methods and Backbone Models. We compare the 
proposed method OptFS with the following feature selection meth-
ods: (i) AutoField [32]: This baseline utilizes neural architecture 
search techniques [15] to select the informative features on a feld 
level; (ii) LPFS [8]: This baseline designs a customized, smoothed-
l0-liked function to select informative felds on a feld level; (iii) 
AdaFS [13]: This baseline that selects the most relevant features for 
each sample via a novel controller network. We apply the above 
baselines over the following mainstream backbone models: FM [26], 
DeepFM [7], DCN [31] and IPNN [24]. 

We also compare the proposed method OptFS with a feature 
interaction selection method: AutoFIS [14]. This baseline utilizes 
GRDA optimizer to abandon unimportant feature interaction in a 
feld-level manner. We apply AutoFIS over the following backbone 
models: FM [26], DeepFM [7]. We only compare with AutoFIS on 

1https://www.kaggle.com/c/criteo-display-ad-challenge 
2http://www.kaggle.com/c/avazu-ctr-prediction 
3http://www.kddcup2012.org/c/kddcup2012-track2/data 

FM and DeepFM backbone models because the original paper only 
provides the optimal hyper-parameter settings and releases source 
code under these settings. 

3.1.4 Implementation Details. In this section, we provide the im-
plementation details. For OptFS, (i) General hyper-params: We set 
the embedding dimension as 16 and batch size as 4096. For the MLP 
layer, we use three fully-connected layers of size [1024, 512, 256]. 
Following previous work [24], Adam optimizer, Batch Normaliza-
tion [10] and Xavier initialization [5] are adopted. We select the 
optimal learning ratio from {1e-3, 3e-4, 1e-4, 3e-5, 1e-5} and �2 reg-
ularization from {1e-3, 3e-4, 1e-4, 3e-5, 1e-5, 3e-6, 1e-6}. (ii) OptFS 
hyper-params: we select the optimal regularization penalty � from 
{1e-8, 5e-9, 2e-9, 1e-9}, training epoch � from {5, 10, 15}, fnal value 
� from {2e+2, 5e+2, 1e+3, 2e+3, 5e+3, 1e+4}. During the re-training 
phase, we reuse the optimal learning ratio and �2 regularization and 
choose the rewinding epoch �� from {1, 2, · · · ,� −1}. For AutoField 
and AdaFS, we select the optimal hyper-parameter from the same 
hyper-parameter domain of OptFS, given the original paper does 
not provide the hyper-parameter settings. For LPFS and AutoFIS, we 
reuse the optimal hyper-parameter mentioned in original papers. 

Our implementation4 is based on a public Pytorch library for CTR 
prediction5. For other baseline methods, we reuse the ofcial imple-
mentation for the AutoFIS6 [14] method. Due to the lack of available 
implementations for the LPFS [8], AdaFS[13] and AutoField[32] 
methods, we re-implement them based on the details provided by 
the authors and open-source them to beneft future researchers7. 

3.2 Overall Performance(RQ1) 
In this section, we conduct two studies to separately compare fea-
ture selection methods and feature interaction selection methods 
in Section 3.2.1 and 3.2.2. Notes that both these methods can be 
viewed as a solution to the feature set optimization problem. 

3.2.1 Feature Selection. The overall performance of our OptFS and 
other feature selection baseline methods on four diferent backbone 
models using three benchmark datasets are reported in Table 2. We 
summarize our observation below. 

Firstly, our OptFS is efective and efcient compared with other 
baseline methods. OptFS can achieve higher AUC with a lower 
feature ratio. However, the beneft brought by OptFS difers on 
various datasets. On Criteo, OptFS tends to reduce the size of the 
feature set. OptFS can reduce 86% to 96% features with improvement 
not considered signifcant statistically. On the Avazu and KDD12 
datasets, the beneft tends to be both performance boosting and 
feature reduction. OptFS can signifcantly increase the AUC by 
0.01% to 0.45% compared with the backbone model while using 
roughly 10% of the features. Note that the improved performance 
is because OptFS considers feature interaction’s infuence during 
selection. Meanwhile, other feature selection baselines tend to bring 
performance degradation. This is likely because they adopt the 
feature feld selection. Such a design will inevitably drop useful 
features or keep useless ones. 

4https://github.com/fuyuanlyu/OptFS
5https://github.com/rixwew/pytorch-fm 
6https://github.com/zhuchenxv/AutoFIS 
7https://github.com/fuyuanlyu/AutoFS-in-CTR 
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Table 2: Performance Comparison Between OptFS and Feature Selection Methods. 

Method 
FM DeepFM DCN IPNN 

AUC↑ Logloss↓ Ratio↓ AUC↑ Logloss↓ Ratio↓ AUC↑ Logloss↓ Ratio↓ AUC↑ Logloss↓ Ratio↓ 

Cr
ite

o 

Backbone 
LPFS 

AutoField 
AdaFS 
OptFS 

0.8055 
0.7888 
0.7932 
0.7897 
0.8060 

0.4457 
0.4604 
0.4567 
0.4597 
0.4454 

1.0000 
0.0157 
0.0008 
1.0000 
0.1387 

0.8089 
0.7915 
0.8072 
0.8005 
0.8100∗ 

0.4426 
0.4579 
0.4439 
0.4501 
0.4415∗ 

1.0000 
0.2415 
0.3811 
1.0000 
0.0422 

0.8107 
0.7802 
0.8113 
0.8053 
0.8111 

0.4410 
0.4743 
0.4402 
0.4472 
0.4405 

1.0000 
0.1177 
0.5900 
1.0000 
0.0802 

0.8110 
0.7789 
0.8115 
0.8065 
0.8116 

0.4407 
0.4705 
0.4401 
0.4448 
0.4401 

1.0000 
0.3457 
0.9997 
1.0000 
0.0719 

Av
az
u 

Backbone 
LPFS 

AutoField 
AdaFS 
OptFS 

0.7838 
0.7408 
0.7680 
0.7596 
0.7839 

0.3788 
0.4029 
0.3862 
0.3913 
0.3784 

1.0000 
0.7735 
0.0061 
1.0000 
0.8096 

0.7901 
0.7635 
0.7870 
0.7797 
0.7946∗ 

0.3757 
0.3942 
0.3773 
0.3837 
0.3712∗ 

1.0000 
0.9975 
1.0000 
1.0000 
0.8686 

0.7899 
0.7675 
0.7836 
0.7693 
0.7932∗ 

0.3755 
0.3889 
0.3782 
0.3954 
0.3718∗ 

1.0000 
0.9967 
0.9992 
1.0000 
0.8665 

0.7913 
0.7685 
0.7865 
0.7818 
0.7950∗ 

0.3744 
0.3883 
0.3770 
0.3833 
0.3709∗ 

1.0000 
0.9967 
0.9992 
1.0000 
0.9118 

KD
D
12

 Backbone 
LPFS 

AutoField 
AdaFS 
OptFS 

0.7783 
0.7725 
0.7411 
0.7418 
0.7811∗ 

0.1566 
0.1578 
0.1634 
0.1644 
0.1560∗ 

1.0000 
1.0000 
0.0040 
1.0000 
0.5773 

0.7967 
0.7964 
0.7919 
0.7917 
0.7988∗ 

0.1531 
0.1532 
0.1542 
0.1543 
0.1527∗ 

1.0000 
1.0000 
0.9962 
1.0000 
0.9046 

0.7974 
0.7970 
0.7943 
0.7939 
0.7987∗ 

0.1531 
0.1530 
0.1536 
0.1538 
0.1527 

1.0000 
1.0000 
0.8249 
1.0000 
0.8945 

0.7966 
0.7967 
0.7926 
0.7936 
0.7976 

0.1532 
0.1532 
0.1541 
0.1539 
0.1530 

1.0000 
1.0000 
0.8761 
1.0000 
0.8762 

Here ∗ denotes statistically signifcant improvement (measured by a two-sided t-test 
with p-value < 0.05) over the best baseline. Bold font indicates the best-performed 

method. 

Secondly, diferent datasets behave diferently regarding the re-
dundancy of features. For example, on the Criteo dataset, all meth-
ods produce low feature ratios, indicating that this dataset contains 
many redundant features. On the other hand, on the Avazu and 
KDD12 datasets, all methods produce high feature ratios, suggesting 
that these two datasets have lower redundancy. OptFS can better 
balance the trade-of between model performance and efciency 
compared with other baselines in all datasets. 

Finally, feld-level feature selection methods achieve diferent 
results on various backbone models. Compared to other deep mod-
els, FM solely relies on the explicit interaction, i.e. inner product. If 
one feld z� is zeroed out during the process, all its related interac-
tions will be zero. The other felds are also lured into zero, as their 
interaction with feld z� does not bring any information into the 
fnal prediction. Therefore, it can be observed that LPFS has a low 
feature ratio on Criteo and high feature ratios on Avazu and KDD12 
datasets. On the other hand, AutoField generates low feature ratios 
(∼0%) on all three datasets. These observations further highlight the 
necessity of introducing feature-level granularity into the feature 
set optimization problem as OptFS does. 

3.2.2 Feature Interaction Selection. In this subsection, we aim to 
study the infuence of the OptFS method on feature interaction 
selection. The overall performance of our OptFS and AutoFIS on 
DeepFM and FM backbone models are reported in Table 3. We 
summarize our observation below. 

Firstly, compared with backbone models that do not perform any 
feature interaction selection, AutoFIS and OptFS achieve higher per-
formance. Such an observation points out the existence of useless 
feature interaction on both datasets. 

Secondly, the performance of OptFS and AutoFIS difers on difer-
ent models. With fewer features in the feature set, OptFS achieves 
nearly the same performance as AutoFIS on FM while performing 
signifcantly better on DeepFM. This is because OptFS focuses on 
feature-level interactions, which are more fne-grained than the 
feld-level interactions adopted by AutoFIS. 

Table 3: Performance Comparison Between OptFS and Fea-
ture Interaction Selection Method. 

Model Method 
Metrics 

AUC↑ Logloss↓ Ratio↓ 

te
o FM 

Backbone 
AutoFIS 
OptFS 

0.8055 
0.8063 
0.8060 

0.4457 
0.4449 
0.4454 

1.0000 
1.0000 
0.1387 

Cr
i

DeepFM 
Backbone 
AutoFIS 
OptFS 

0.8089 
0.8097 
0.8100 

0.4426 
0.4418 
0.4415 

1.0000 
1.0000 
0.0422 

Backbone 0.7838 0.3788 1.0000 

Av
az
u 

FM AutoFIS 
OptFS 

0.7843 
0.7839 

0.3785 
0.3784 

1.0000 
0.8096 

Backbone 0.7901 0.3757 1.0000 
DeepFM AutoFIS 0.7928 0.3721 1.0000 

OptFS 0.7946∗ 0.3712∗ 0.8686 
Here ∗ denotes statistically signifcant improvement (measured by a two-sided t-test 
with p-value < 0.05) over the best baseline. Bold font indicates the best-performed 
method. 

Finally, it is also worth mentioning that OptFS can reduce 13% to 
96% of features while AutoFIS is conducted on all possible features 
without any reduction. 

3.3 Transferability Study(RQ2) 
In this subsection, we investigate the transferability of OptFS’s re-
sult. The experimental settings are listed as follows. First, we search 
the gating vector g from one model, which we named the source. 
Then, we re-train another backbone model given the obtained gat-
ing vector, which we call the target. We study the transferability 
between DeepFM, DCN and IPNN backbone models over both 
Criteo and Avazu datasets. Based on the results shown in Table 4, 
we can easily observe that all transformation leads to performance 
degradation. Such degradation is even considered signifcant over 
the Avazu dataset. Therefore, feature interaction operations require 
diferent feature sets to achieve high performance. We can con-
clude that the selection of the feature set needs to incorporate the 
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interaction operation, which further highlights the importance of 
selecting both features and their interactions in a unifed, end-to-
end trainable way. 

Table 4: Transferability Analysis on Criteo and Avazu. 

Target Source 
Metrics 

AUC↑ Logloss↓ Ratio↓ 

DeepFM 
DeepFM 
DCN 

0.8100 
0.8097 

0.4415 
0.4419 

0.0422 
0.0802 

Cr
ite

o 

IPNN 0.8097 0.4418 0.0719 

DCN 
DCN 

DeepFM 
IPNN 

0.8111 
0.8106 
0.8107 

0.4405 
0.4410 
0.4410 

0.0802 
0.0422 
0.0719 

IPNN 
IPNN 
DCN 

DeepFM 

0.8116 
0.8113 
0.8114 

0.4401 
0.4404 
0.4403 

0.0719 
0.0802 
0.0422 

DeepFM 0.7946∗ 0.3712∗ 0.8686 

Av
az
u 

DeepFM DCN 
IPNN 

0.7873 
0.7872 

0.3754 
0.3755 

0.8665 
0.9118 

DCN 
DCN 

DeepFM 
0.7932∗ 

0.7879 
0.3718∗ 

0.3784 
0.8665 
0.8686 

IPNN 0.7860 0.3762 0.9118 
IPNN 0.7950∗ 0.3709∗ 0.9118 

IPNN DCN 0.7907 0.3747 0.8665 
DeepFM 0.7908 0.3748 0.8686 

Here ∗ denotes statistically signifcant improvement (measured by a two-sided t-test 
with p-value < 0.05) over the best baseline. Bold font indicates the best-performed 
method. 

3.4 Ablation Study(RQ3) 
In this subsection, we conduct the ablation study over the infu-
ence of the re-training stage, which is detailedly illustrated in Sec-
tion 2.4.2. In Section 2.4.2, we propose a customized initialization 
method, namely c.i., during the re-training stage. Here we com-
pare it with the other three methods of obtaining model param-
eters: (i) w.o., which is the abbreviation for without re-training, 
directly inherit the model parameters from the searching stage; 
(ii) r.i. randomly initialize the model parameters; (iii) l.t.h., which 
stands for lottery ticket hypothesis, is a common method for re-
training sparse network [4]. Specifcally, it initializes the model 
parameters with the same seed from the searching stage. The ex-
periment is conducted over three backbone models, DeepFM, DCN 
and IPNN, over Criteo and Avazu benchmarks. We can make the 
following observations based on the result shown in Table 5. 

Firstly, we can easily observe that re-training can improve per-
formance regardless of its setting. Without re-training, the neural 
network will inherit the sub-optimal model parameters from the 
searching stage, which is infuenced by the non-binary element 
in the gating vector. Re-training improves the model performance 
under the constraint of the gating vector. 

Secondly, c.i. constantly outperforms the other two re-training 
methods. Such performance gaps are considered signifcant on 
all three backbone models over the Avazu dataset. This is likely 
because, on the Avazu dataset, the backbone models are usually 
trained for only one epoch before they get early-stopped for over-
ftting. Hence, it further increases the importance of initialization 
during the re-training stage. This observation validates the neces-
sity of introducing customized initialization in CTR prediction. 

Table 5: Ablation Study Regarding the Re-training Stage. 

Model Metrics Methods 
w.o. r.i. l.t.h. c.i. 

DeepFM 
AUC↑ 

Logloss↓ 
0.8012 
0.4686 

0.8100 0.8100 
0.4416 0.4415 

0.8100 
0.4415 

Cr
ite

o 

DCN 
AUC↑ 

Logloss↓ 
0.8077 
0.4522 

0.8109 0.8108 
0.4407 0.4408 

0.8111 
0.4405 

IPNN 
AUC↑ 

Logloss↓ 
0.7757 
0.4998 

0.8113 0.8114 
0.4404 0.4403 

0.8116 
0.4401 

DeepFM 
AUC↑ 

Logloss↓ 
0.6972 
0.5017 

0.7873 0.7883 
0.3754 0.3790 

0.7946∗ 

0.3712∗ 

Av
az
u 

DCN 
AUC↑ 

Logloss↓ 
0.7122 
0.4736 

0.7870 0.7858 
0.3801 0.3764 

0.7932∗ 

0.3718∗ 

IPNN 
AUC↑ 

Logloss↓ 
0.7560 
0.4411 

0.7912 0.7910 
0.3745 0.3745 

0.7950∗ 

0.3709∗ 

Here ∗ denotes statistically signifcant improvement (measured by a two-sided t-test 
with p-value < 0.05) over the best baseline. Bold font indicates the best-performed 
method. Here w.o. stands for without re-training, r.i. stands for re-training with random 
initialization, l.t.h. stands for initialization using lottery ticket hypothesis [4], c.i. stands 
for re-training with customized initialization, as previously discussed in Section 2.4. 

3.5 Efciency Analysis(RQ4) 
In addition to model performance, efciency is vital when deploying 
the CTR prediction model in reality. In this section, we investigate 
the time and space complexity of OptFS. 

Figure 4: Inference Time on Criteo and Avazu Dataset. The 
Y-axis represents the infuence time, measured by ms 

(a) DeepFM (b) DCN 

Figure 5: Visualization of efciency-efectiveness trade-of 
on Criteo datasets. The closer to the top-left the better. 

3.5.1 Time Complexity. The inference time is crucial when deploy-
ing the model into online web systems. We defne inference time 
as the time for inferencing one batch. The result is obtained by 
averaging the inference time over all batches on the validation set. 

As shown in Figure 4, OptFS achieves the least inference time. 
This is because the feature set obtained by OptFS usually has the 
least features. Meanwhile, AdaFS requires the longest inference 
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(a) Mutual Info (b) DeepFM (c) DCN (d) IPNN 

Figure 6: A Case Study of OptFS output on Criteo. In all subfgures, the X-axis indicates the feld identifers. Subfgure (a) plots 
the mutual information scores, while subfgures (b), (c) and (d) plot the feature set ratio of OptFS on DeepFM, DCN and IPNN. 

time, even longer than the backbone model. This is because it needs 
to determine whether keep or drop each feature dynamically during 
run-time. 

3.5.2 Space Complexity. We plot the Feature Ratio-AUC curve of 
the DeepFM, DCN and IPNN model on the Criteo datasets in Figure 
5, which refects the relationship between the space complexity of 
the feature set and model performance. Notes that LPFS, AutoField 
and OptFS are methods that primarily aim to improve model per-
formance. These methods have no guarantee over the fnal feature 
ratios. Hence we only plot one point for each method in the fgure. 

From Figure 5 we can make the following observations: (i) OptFS 
outperforms all other baselines with the highest AUC score and the 
least number of features. (ii) The model performance of AutoField 
is comparable with OptFS and Backbone. However, given it only 
selects the feature set on feld-level, its feature ratio tends to be 
higher than OptFS. (iii) The performance of LPFS is much lower 
than other methods. 

3.6 Case Study(RQ5) 
This subsection uses a case study to investigate the optimal feature 
set obtained from OptFS. In Figure 6, we plot the mutual information 
with the feature ratio on each feld. For feld z� = {x�� } and ground 
truth labels y (� ∈ y), the mutual information between them is 
defned as: ∑ ∑ 
MI(x�� , y) = − P(�) log P(�) + P(x�� , �) log P(� |x�� ), (17) 

where the frst term is the marginal entropy and the second term 
is the conditional entropy of ground truth labels y given feld z� = 
{x�� }. Note that felds with high mutual information scores are 
more informative (hence more important) to the prediction. 

As a case study, we investigate the feature ratio for each feld, 
shown in Figure 6. We select the result from DeepFM, DCN and 
IPNN on the Criteo dataset. Figure 6(a) shows the mutual informa-
tion scores of each feld, which represents how informative each 
feld is in predicting the label. Figure 6(b), 6(c) and 6(d) shows the 
feature ratio given each felds. As can be seen, felds with higher 
mutual information scores are likely to keep more features in the 
feature set, which indicates that OptFS obtains the optimal feature 
set from the feld perspective. 

4 RELATED WORK 
In this section, we review the related work. Optimizing feature 
set is related two topics, feature selection and feature interaction 
selection. The training scheme of proposed OptFS is related to 
learning by continuation. Thus we summarize the related work in 
following two subsection. 

4.1 Feature and Feature Interaction Selection 
Feature selection is a key component for prediction task [3]. Several 
methods have been proposed [8, 13, 17, 30, 32] to conduct feature 
selection for CTR models. Traditional methods [17, 30] exploit the 
statistical metrics of diferent feature felds and conduct feature feld 
selection. Inspired by neural architecture search (NAS) [15, 18] and 
smoothed-l0 optimization respectively, AutoField [32] and LPFS [8] 
determine the selection of feature felds automatically. AdaFS [13] 
proposes a novel controller network to decide feature felds for 
each sample, which fts the dynamic recommendation. Feature 
interaction selection is often employed to enhance the prediction. 
Some methods [12, 14] model the problem as NAS to exploit the 
feld-level interaction space. OptInter [20] investigates the way to 
do feature interaction. AutoCross [19] targets on tabular data and 
iterative fnds feature interaction based on locally optimized feature 
set. We frst highlight the feature set optimization problem in CTR 
prediction, and OptFS is diferent from previous methods by solving 
both problems in a unifed manner. 

4.2 Learning by Continuation 
Continuation methods are commonly used to approximate intractable 
optimization problems by gradually increasing the difculty of the 
underlying objective. By adopting gradual relaxations to binary 
problems, gumbel-softmax [11] is used to back-propagate errors 
during the architecture search [33] and spatial feature sparsifca-
tion [35]. Other methods [16, 28, 36] introduce continuous sparsif-
cation framework to speed up neural network pruning and ticket 
search. OptFS adopts the learning-by-continuation scheme to efec-
tively explore the huge feature-level search space. 

5 CONCLUSION 
This paper frst distinguishes the feature set optimization problem. 
Such a problem unifes two mutually infuencing questions: the 
selection of features and feature interactions. To our knowledge, no 
previous work considers these two questions uniformly. Besides, 
we also upgrade the granularity of the problem from feld-level to 
feature-level. To solve such the feature set optimization problem 
efciently, we propose a novel method named OptFS, which as-
signs a gating value to each feature for its usefulness and adopt a 
learning-by-continuation approach for efcient optimization. Ex-
tensive experiments on three large-scale datasets demonstrate the 
superiority of OptFS in model performance and feature reduction. 
Several ablation studies also illustrate the necessity of our design. 
Moreover, we also interpret the obtained result on feature felds and 
their interactions, highlighting that our method properly solves the 
feature set optimization problem. 
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