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ABSTRACT 
Tabular data is one of the most common data storage formats be-
hind many real-world web applications such as retail, banking, and 
e-commerce. The success of these web applications largely depends 
on the ability of the employed machine learning model to accu-
rately distinguish infuential features from all the predetermined 
features in tabular data. Intuitively, in practical business scenarios, 
diferent instances should correspond to diferent sets of infuential 
features, and the set of infuential features of the same instance 
may vary in diferent scenarios. However, most existing methods 
focus on global feature selection assuming that all instances have 
the same set of infuential features, and few methods considering 
instance-wise feature selection ignore the variability of infuential 
features in diferent scenarios. In this paper, we frst introduce a 
new perspective based on the infuence function for instance-wise 
feature selection, and give some corresponding theoretical insights, 
the core of which is to use the infuence function as an indicator 
to measure the importance of an instance-wise feature. We then 
propose a new solution for discovering instance-wise infuential 
features in tabular data (DIWIFT), where a self-attention network 
is used as a feature selection model and the value of the correspond-
ing infuence function is used as an optimization objective to guide 
the model. Benefting from the advantage of the infuence function, 
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i.e., its computation does not depend on a specifc architecture and 
can also take into account the data distribution in diferent scenar-
ios, our DIWIFT has better fexibility and robustness. Finally, we 
conduct extensive experiments on both synthetic and real-world 
datasets to validate the efectiveness of our DIWIFT. 

CCS CONCEPTS 
• Computing methodologies → Feature selection; • Informa-
tion systems → Data mining. 
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1 INTRODUCTION 
Tabular data is one of the most common data storage formats pre-
pared for modeling in many practical web applications, such as 
e-commerce [34], fraud detection [5] and anomaly detection [21]. 
Typically, in tabular data, each row represents an instance and each 
column represents a feature. The value in a table cell is the specifc 
value for that feature in a data instance [6]. Note that in addition to 
the column of features, there may be a column of labels indicating 
the category to which the corresponding instance belongs, e.g., in 
a supervised task. Unlike homogeneous data such as image, text 
or speech data, which often have strong spatial, semantic or tem-
poral correlations, tabular data tends to be heterogeneous, and the 
correlation between diferent columns (or features) may be weak. 
As an example, in Table 1, we present a slice of the UCI-bank1 

1https://archive.ics.uci.edu/ml/datasets/bank+marketing 
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dataset used in the experiments, where “age (n)” and “education 
(c)” are two diferent columns and the correlation between them 
is ambiguous. Obviously, this property makes it much harder to 
customize a model to get good results from tabular data than from 
homogeneous data. 

Table 1: An example of tabular data in the UCI-bank dataset. 
The parenthesized letter in each column name indicates the 
type of feature, where ‘n’ is a numerical dense feature and ‘c’ 
is a categorical sparse feature. 

Age (n) Job (c) Marital (c) Education (c) Balance (n) Housing (c) 

30 unemployed married primary 1787 no 
33 services married secondary 4789 yes 
35 management single tertiary 1350 yes 
59 blue-collar married secondary 0 yes 
35 management single tertiary 747 no 

To perform a more efcient learning process in tabular data and 
be successful in some corresponding business applications, an im-
portant approach is select features in a targeted manner following 
the optimization objective of the custom model [1], i.e., to identify 
the most infuential features from all the predetermined features. In-
tuitively, the necessity of feature selection for tabular data is mainly 
refected in the following aspects: 1) Efciency. Tabular data usually 
consists of many dense numerical features and high-dimensional 
sparse features, which consume a lot of resources in the training 
and inference stages of the model. Selecting only the most infuen-
tial features and feeding them into the model can greatly reduce the 
costs. 2) Accuracy. The correlation between features in tabular data 
is ambiguous. Moreover, there are often many irrelevant or redun-
dant features, which are difcult to be distinguished in advance in 
the feature pre-determining stage. Removing features that are not 
infuential (i.e., irrelevant or redundant) will beneft the learning of 
a model. In particular, since each instance usually has a diferent set 
of infuential features that are benefcial to a particular task, it may 
be more benefcial to keep diferent infuential features in diferent 
instances. 3) Interpretability. A good interpretability of the adopted 
model is usually expected in practical business applications. For 
example, in a credit card approval scenario with the use of an auxil-
iary model, we would expect the model to simultaneously provide 
some key factors that infuence the decision. Identifying the most 
infuential features helps to indicate the importance of each feature 
and enhances the interpretability of the results. 

However, although many research works on learning from tab-
ular data have been proposed, few of them focus on solving the 
problem of feature selection in tabular data [2]. In particular, these 
research works can be mainly divided into two categories according 
to their problems and goals, including how to efectively model tab-
ular data [1, 11, 17, 27], especially leveraging neural networks, and 
how to capture feature interactions for tabular data [3, 15, 16, 31]. 
In addition, some of the above works may have an implicit feature 
selection step in the modeling process, but most of them may sufer 
from the redundant features as they are not designed for the goal 
of feature selection. On the other hand, in order to reduce the huge 
workload of manually identifying the most infuential features from 
tabular data, existing works aiming at solving the problem of fea-
ture selection mostly focus on global feature selection [9], i.e., the 

granularity of selection is an entire column in tabular data and all 
instances have the same set of infuential features. The limitation 
of global feature selection is that in practice, the infuential features 
w.r.t. diferent instances or a same instance in diferent environ-
ments may be diferent. For this reason, we are motivated to design 
a robust instance-wise feature selection method for tabular data. 

To the best of our knowledge, there is still a lack of research on 
instance-wise feature selection for tabular data compared with those 
for homogeneous data [4, 20, 32]. In this paper, we frst introduce a 
new perspective based on the infuence function for instance-wise 
feature selection. Moreover, we give some theoretical insights, i.e., 
how to use the infuence function as an indicator to measure the 
importance of an instance-wise feature, so as to guide instance-wise 
feature selection. We then propose a new solution for discovering 
instance-wise infuential features in tabular data (DIWIFT). Specif-
cally, our DIWIFT mainly include a feature selection module with a 
self-attention network and a calculator for computing the value of 
the corresponding infuence function, which will be used to guide 
the selection of some instance-wise features. Our DIWIFT is of 
better fexibility and robustness due to the merits of the infuence 
function, i.e., its computation does not depend on a specifc archi-
tecture and it enables the model to trade of between training and 
validation distributions. Finally, we conduct extensive experiments 
on three synthetic and four real-world datasets, where the results 
clearly the efectiveness and robustness of our DIWIFT. 

2 RELATED WORK 
In this section, we briefy review some related works on three 
research topics, including tabular data modeling, feature selection 
and infuence function. 
Tabular Data Modeling. Existing works on tabular data modeling 
can be mainly divided into two categories. The frst category fo-
cuses on how to model tabular data more efectively [1, 11, 17, 27], 
especially using neural networks. For example, introducing more 
complex network structures to learn fusion of diferent features 
and increasing interpretability [1, 17], or modeling tabular data 
through some new perspectives such as multi-view representa-
tion learning [27]. The second category aims to design some more 
efcient ways to capture feature interactions in tabular data model-
ing [3, 15, 16, 31]. Unlike them, our DIWIFT focuses on addressing 
instance-wise feature selection in tabular data, which is rarely stud-
ied in existing works. Note that some related works may also include 
feature selection as an incidental output, such as TabNet [1], but 
since feature selection is not their main goal, they may still sufer 
from feature redundancy. In addition, our DIWIFT can be used as a 
pre-feature selection module to integrate with these tabular data 
modeling methods to enhance their efectiveness and efciency. 
Feature Selection. Feature selection often refers to discovering a 
subset of features based on their usefulness. Most existing methods 
focus on global feature selection, where the importance of each 
feature is assigned based on the entire training data [9]. To achieve 
instance-wise feature selection, many previous studies on homoge-
neous data (instead of on tabular data) have been proposed, where 
the number of infuential features per instance is assumed to be 
the same and diferent, respectively [4, 20, 32]. Note that feature 
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selection may still be benefcial in deep models in addition to tradi-
tional machine learning models [18, 19]. However, feature selection 
is generally not a major optimization goal in existing works on tab-
ular data modeling, and there are very few works on instance-wise 
feature selection in tabular data. Our DIWIFT aims to bridge the 
gap in this research direction. In addition, our DIWIFT is also easy 
to integrate with existing feature selection methods by using the 
proposed infuence function-based loss as their auxiliary loss to 
improve the performance of feature selection. 
Infuence Function. Infuence function (IF) is an important con-
cept in the scope of robust statistics and is defned by the Gateaux 
derivative [10]. It can be used to measure instance-wise infu-
ence [13, 23, 30, 33] and feature-wise infuence [26] on a validation 
loss. These obtained infuences can be used to construct a sampling 
strategy for the important instances [29, 30], or to reweight the 
biased training instances in an optimization objective [23, 33], etc. 
We fnd that most of the previous works on IF focus on the instance 
level, and rarely involve the feature level as that in the studied prob-
lem of this paper. Furthermore, there is no general and systematic 
analysis on how to guide the use of IF in feature selection. Our 
DIWIFT is a novel IF-based instance-wise feature selection method 
for tabular data. 

3 PRELIMINARIES 
In this paper, we focus on feature selection in supervised learning. 
The training instances {�� }� = {(�� , �� )}��=1 ∈ X × Y are drawn 

�=1
from a training distribution � (�, �), where � is the number of the 
training instances, X = X1 × · · · × X� is the �-dimensional feature 
space, and Y is the discrete label space, which is {0, 1} in binary clas-
sifcation and {1, . . . , �} in multi-class classifcation. A prediction 
model trained on a given training sample {�� }��=1 can be obtained by 

minimizing the empirical risk, i.e., �̂  ≜ arg min� ∈Θ 
1 Í 

�
� 
=1 � (�� , � ).� 

Note that to simplify the notation, we omit the regularization term 
in the loss. We put the main notations in Table 2 for ease of refer-
ence. 

Table 2: The main notations and their explanations. 

Symbol 
�� , � � 
� , � , � 

�, �, � 

�� , ��� 
� , ��� 

�̂ , � 
�̂ , � 

� (�� , � � )
�� , ��� 

� (·) 
� (�, �)
� (�, �) 

Meaning 
�-th training and �-th validation instance. 
Index of training instance, validation instance, and 
feature. 
Size of training set, evaluation set, and feature dimen-
sion. 
Perturbation on features of �� , �� ∈ R� , ��� ∈ R . 
Feature selection matrix and its element for training 
set, � ∈ R�×� , ��� ∈ R. 
Parameter of base model. 
Parameter of self-attention network. 
Infuence function of �� on � � , � (�� , � � ) ∈ R1×� . 
Infuence function of �� on the whole validation set, 
�� ∈ R1×� , ��� ∈ R. 
Loss of base model, � (·) ∈ R. 
Training distribution. 
Validation distribution. 
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3.1 Feature Selection Matrix in Training Data 
Instead of global feature selection which selects a same subset of 
features for all the instances, we consider a more complex case 
where diferent instances depend on diferent subsets of features, 
and then aim to improve the model performance through instance-
wise feature selection. We refer to � ∈ {0, 1}�×� as the feature 
selection matrix for the training set. Note that the number � of 
instances in a tabular data is often much larger than the number 
� of columns (or features). Each row and column in the feature 
selection matrix � corresponds to each instance and each feature 
in the training set, respectively. Therefore, in the feature selection 
matrix � , it can be represented as 1 if a feature of an instance is 
preserved, and 0 otherwise. To sum up, the meaning of � is, (

1 if feature � is selected in �� ,
��� = (1)

0 if feature � is not selected or is zero in �� . 

3.2 Defnition of Infuence Function 
How to measure the infuence of a feature on model performance 
is the key question in feature selection, for which we utilize the 
infuence function (IF). We frst briefy introduce the defnition 
of the feature-level infuence function. If a training instance �� is 
perturbed to � ′ = (� � + �� , �� ), the infuence of the perturbation on 

� 
the loss at a validation instance � � has a closed-form expression [13]: 

�� (� � , �̂  
�� )

� (�� , � � ) ≜ |�� =0��� (2) 
= −∇� � (� � , �̂ )⊤� −1∇� ∇� � (�� , �̂ ),

�̂  

where �̂  
�� is the empirical risk minimizer after �� is perturbed to 

�
� 
′ , � (�� , � � ) ∈ R1×� is the feature-level IF of �� over � � , � � is a 
validation instance draw from a validation distribution � (�, �), 
and �

�̂  ≜ � 
1 Í�

�=1 ∇� 
2� (�� , � ) is a positive and defnite Hessian ma-

trix. Note that previous studies targeting feature-level IF are few. 
Diferent from the feature-level IF in Eq.(2), instance-level IF has 
been exploited in many previous studies on instance sampling and 
instance reweighting [23, 30, 33]. 

4 THE PROPOSED METHOD 
In this section, we frst introduce some theoretical insights on how 
to use the infuence function to discover some most infuential 
instance-wise infuential features. We then propose a new method 
for discovering instance-wise infuential features in tabular data 
and describe it in detail. 

4.1 Theoretical Analysis 
According to the defnition of feature-level IF in Eq.(2), we can 
approximate the loss change of � � ∼ � (�, �) if �� ∼ � (�, �) is 
perturbed by �� ∈ R� , 

� (� � , �̂  
�� ) − � (� � , �̂ ) ≈ � (�� , � � )�� . (3) 

This process can be extended to the whole validation set as follows, 
� � � ∑ ∑ ∑ 
� (� � , �̂  

�� ) − � (� � , �̂ ) ≈ [ � (�� , � � )]�� , (4) 
�=1 � =1 �=1 
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Base Model

Pre-trained Model

Pre-training Module

Self-Attention Network

Selection Probability

Feature Selection Module

Selected Features

IF Calculator

IF-based loss for
instance-wise feature

selection

Back Propagation

Figure 1: The overall architecture of the proposed DIWIFT, where the core components are a feature selection model with a 
self-attention network, and an IF calculator for calculating the value of the corresponding infuence function. 

where � is the size of the validation set. Obviously, the best pertur-
bation should minimize the validation loss 

Í�
� =1 � (� � , �̂  

�� ). We then 
have the optimization problem about �� , 

�∑ 
� ∗ = arg min � (� � , �̂  

�� ) = arg min �� �� , (5)� 
�� �� �=1 

where �� = 
Í� 

=1 � (�� , � � ) ∈ R1×� indicates the infuence of in-� 
stance �� over the whole validation set. 

Let the �-th dimension of �� , �� and �� be denoted as ��� , ��� 
and ��� , respectively. For the adversarial training problems where 
the feature values are dense and continuous, such as image data, 
the optimal �∗ is in the direction of �� [13]. However, for the 

� �
problem of feature selection in tabular data, the range of values 
for ��� is {0, −��� }, where ��� = 0 means ��� remains unchanged, 
and ��� = −��� means ��� is removed. Moreover, in tabular data, 
the one-hot encoded sparse feature value ��� is in {0, 1}, and the 
normalized dense feature value ��� is in [0, 1]. Thus, ��� ≤ 0 always 
holds, and the solution of Eq.(5) is,(

0 if ��� < 0,
� ∗ = (6)
�� −��� if ��� ≥ 0. 

The results in Eq.(6) is intuitive because ��� ≥ 0 means the presence 
of ��� will increase the validation loss, for which we should indeed 
remove this feature. Recall the feature selection matrix � defned in 
Section 3, we can see that, if a feature � in �� is selected, i.e., ��� = 1, 
then both conditions should be satisfed, i.e., ��� > 0 and ��� = 0. 
We then get the theoretically optimal �∗ ,

�� 

� ∗ = 1(��� ��� < 0), (7)
�� 

where 1(·) is a 0-1 indicator function. 
This means that by minimizing the validation loss of the model 

trained after instance-wise feature selection, we can obtain the 
optimal instance-wise feature selection strategy in Eq.(7) with the 
help of the infuence function. Note that the infuence function 

allows the model to trade of between the training and validation 
distributions [33], and the resulting instance-wise feature selection 
method is expected to perform robustly in the scenarios where a 
distribution shift exist. Next, we describe the proposed DIWIFT 
method in detail, which is a new instance-wise feature selection 
method based on the infuence function, and verify its robustness 
in the experiments. To the best of our knowledge, most existing 
works on feature selection have not considered the variability of 
infuential features across diferent scenarios. 

4.2 Discovering Instance-wise Infuential 
Features in Tabular Data 

In this section, based on the theoretical insights in Section 4.1, we 
propose a novel method for discovering instance-wise infuential 
features in tabular data, or DIWIFT for short. 

4.2.1 Architecture. The overall framework of our DIWIFT is il-
lustrated in Figure 1. As shown in Figure 1, the core steps of our 
DIWIFT include: 1) a pre-training module aims to train on a base 
model �0 based on the original tabular data, i.e., without feature 
selection, in order to obtain a set of pre-trained model parameters 
�̂ . These model parameters are required in the subsequent steps 
to calculate the value of the infuence function as shown in Eq.(2). 
Although �̂  is theoretically the parameter of the optimal empiri-
cal risk minimizer, we may not be able to obtain an accurate �̂  in 
practice because the deep learning model is non-convex. To this 
end, we will perform a sensitivity analysis about our DIWIFT with 
some pre-trained models of varying performance in our experi-
ments; 2) a feature selection module with a self-attention network 
�1 receives the original tabular data and outputs the correspond-
ing instance-wise feature selection probabilities; 3) after feature 
selection is performed on each instance according to the selection 
probability, these new instances and the pre-trained model �̂  are 
fed into the IF calculator to calculate the value of the correspond-
ing infuence function; and 4) the calculated value of the infuence 

1676



DIWIFT: Discovering Instance-wise Influential Features for Tabular Data WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

function is used to calculate the IF-based loss designed in Eq.(14) 
for instance-wise feature selection, and then the feature selection 
model �1 is updated by means of back propagation. 

Note that since the self-attention mechanism has shown its ef-
fectiveness and fexibility in previous related works [22, 25, 35], we 
employ a self-attention network in the feature selection module as 
an example, to capture the importance of instance-wise features 
driven by the infuence function. However, the self-attention mech-
anism is not a necessary structure, and in fact, any neural network 
layer that can generate a mask matrix of the same dimension as the 
input can be used as a feature selection model. After obtaining the 
feature selection model �1, we need to refne the base model �0 
based on the original instance to obtain the fnal prediction model, 
where the original instance will frst undergo a feature selection 
process through �1. Similarly, in the prediction stage, each instance 
will go through a process of instance-wise feature selection through 
�1, and then get the predicted label that is fed into the fnal pre-
diction model. Next, we will give a detailed introduction to the 
important modules in our DIWIFT. 

4.2.2 Feature selection module. As described in Section 4.2.1, we 
use a self-attention network in the feature selection module to 
efectively model the selection probability, since a self-attention [28] 
has been proven to be a useful module that can capture important 
features in instances [22, 25, 35]. We frst use a multi-head attention 
on an instance to get its embedding representation. Specifcally, we 
have, 

� = � = � = (e1; e2; . . . ; e� ; . . . ; e� ) , (8) 
where e� denotes the embedding representation of the �-th feature, 
� = � = � ∈ �� ×�� and �� is the dimension of the output em-
bedding. Then, the computation of self-attention can be expressed 
as, 

��� 
���������(�, �,� ) = �� � ���� ( √ )� . (9) 

�� 
Further, the multi-head self-attention can be calculated as follows, 

� = �����ℎ��� (�, �,� ) 

= ����������� (ℎ���1, ℎ���2, . . . , ℎ���ℎ)� � , 
(10) 

where ℎ denotes the number of self-attention networks, ℎ���� = 
∈ �ℎ�� ×�� ���������(�� , �� ,�� ) and � � is a parameter matrix. 

After obtaining the embedding representation � of an instance, we 
feed it into a multi-layer perceptron (MLP) with a ���� activation 
function to obtain the corresponding output for each instance, 

� (�, �) = ��� (�), (11) 

where � (�, �) : R� → R� denotes the mapping from an input fea-
ture vector to a corresponding output, i.e., a feature selection model 
based on a self-attention network, and � denotes the parameters 
of this model. 

We design the probability of selecting each corresponding feature 
as 

� (�, �) = � (� (�, �)/�), (12) 
where � (�, �) ∈ R� , � (·) is the sigmoid function, � ∈ R+ is the 
alterable temperature parameter. We propose to relate the temper-
ature control coefcient to the number of training iterations, i.e., 
� = max(����, 1 − (1 − ���� )�/���� ), where ���� is a sufciently 

small minimum temperature parameter (e.g., 0.001 used in the ex-
periments), � is the current number of iterations, and ���� is the 
maximum number of iterations. Obviously, as the number of train-
ing iterations increases, � will gradually decrease to a small enough 
value, and this will ensure that the selection probability of each 
feature is close to 0 or 1 to obtain the discrete feature selection mask. 
For ease of understanding, we present a structure of the feature 
selection model in Figure 2. 

Multi-Head Self-Attention

Multi-Layer Perceptron

Output Conversion with Temperature Parameter

Figure 2: The structure of a feature selection model with a 
self-attention network, where the embedding representation� � 

′ ′ ′of each instance is � = e1, e2, . . . , e .
� 

4.2.3 IF calculator. In this subsection, we introduce the infuence 
function to guide the training of a feature selection model and 
further improve the accuracy and robustness of instance-wise fea-
ture selection for tabular data. According to the defnition of IF 
in Eq.(2), we can fnd that the calculation of IF is usually compli-
cated. Therefore, we need to solve the problem of how to calculate 
IF efciently. Let �� and � � be the selection probabilities of the 
features in �� and � � , respectively, where �� = [��1, ��2, . . . , ��� ]� �
and � � = � � 1, � �2, . . . , � �� . After obtaining the pre-trained model 
parameters �̂  and reweighting the features using �� and � � , the 
infuence of �� on the entire validation set is, 

�∑ 
�� (� (�, �)) = −[ ∇� � (� � ⊙ � � , � � , �̂ )]⊤ 

� =1 (13) 

�
�̂  (�)−1∇� ∇� � (�� ⊙ �� , �� , �̂ ), 

where ⊙ is the element-wise product and �
�̂  (�) = � 

1 Í 
�
� 
=1 ∇� 

2� (�� ⊙ 

�� , �� , �̂ ). The infuence function �� (� (�, �)) can be calculated in 
three steps: 1) we compute the inverse Hessian-vector-product (HVP) 
[∇� 

Í� 
=1 � (� � ⊙ � � , � � , �̂ )]⊤��̂  (�)−1 and set the result as a con-� 

stant vector independent of the derivative of � ; 2) for each training 
instance, we multiply the constant vector with ∇� � (�� ⊙ �� , �� , �̂ ); 
and 3) fnally, we take the derivative with respect to � . The most 
difcult step is computing HVP, and we use a stochastic estima-
tion method from previous studies [13] to efciently handle high-
dimensional and large-scale tabular data. In the stochastic estima-
tion method, let � −1 = 

Í�
�=0 (� − � )� be the frst � terms in the � 

Taylor expansion of � −1, where � is an arbitrary Hessian matrix 
and � is the identity matrix. We then have � −1 = � + (� − � )� −1 

� �−1, 
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1  �−
 → � −1 
� when 2 � →∞ . The key step is that in each iteration,

we can sample some instances to compute an unbiased estimator 
of � . Therefore, we can get the following calculation process for 
HVP: 1) uniformly sample some instances from the training set 
and calculate the Hession matrix �̃ ; 2) defne �−1� =  0 � , whereÍ
� = � [∇� � (� � ⊙ � � �  �̂ , � , )] in  =1 the feature selection; and 3) � re-
cursively compute � −1 1

� � = � + (� − �̃ )�−  
� − 1�. Note that the compu-

tational is 2 complexity of the original IF 3  �  (�� + � ), where � is the
dimension of model parameters, and the complexity of stochastic 
estimation used is � (�� + ���), where � is the number of samples 
sampled, and � is the number of sampling executions. We can fnd 
that DIWIFT is of good scalability by comparing these two com-
plexities. The complete process of calculating �� (� (�, �)) is shown
in Algorithm 1 of Appendix A. 

4.2.4 IF-based loss for instance-wise feature selection. The fnal 
optimization objective of our DIWIFT is to minimize the sum of 
��� of the selected ��� :∑�  

�̂ = arg min �� (� (�, �)) [� (�� , �) ⊙ 1(�� )], (14)
� 

�=1 

where 1(�� ) ∈ R� transfers the �-th dimension of �� to 1 if ��� > 0,
and otherwise to 0. We can see that � (� ) ⊙ 1� , � (�� ) means feature
��� has no probability to be selected if ��� = 0. The complete train-
ing process of our DIWIFT is shown in Algorithm 2 of Appendix A. 

5 EMPIRICAL EVALUATIONS 
In this section, we conduct experiments with the aim of answering 
the following fve key questions. 
• Q1: How does our DIWIFT perform compared to the baselines?
• Q2: How well does our DIWIFT identify the instance-wise infu-
ential features?

• Q3: How do diferent modules of our DIWIFT contribute to its
performance?

• Q4: How does our DIWIFT perform in presence of distribution
shift?

• Q5: How robust is our DIWIFT to fuctuations in a pre-trained
model?

5.1 Experimental Setup
5.1.1 Datasets. To comprehensively evaluate the performance of
our DIWIFT, we consider both some synthetic datasets and real-
world datasets in our experiments. We first generate three syn-
thetic datasets following the approach adopted in previous related
works [4, 32]. Specifically, the input features are generated from an
11-dimensional Gaussian distribution, where there is no correlation
between the features, i.e., 𝒙 ∼ N(0, I). The 𝑘-th feature is denoted
as 𝒙𝑘 . The label 𝑦 is generated from a Bernoulli random variable
with 1P(𝑦 = 1|𝒙) = 1 𝑙𝑜𝑔𝑖𝑡 ( )+ 𝒙

𝑙𝑜𝑔𝑖𝑡 (𝒙 ) , where can vary to create
three different synthetic datasets:( )

Syn1: exp 1 2• 𝒙 𝒙 . �� ��7 8 9 10• Syn2: −10 × sin 2𝒙 + 2 ��𝒙 �� + 𝒙 + exp(−𝒙 ).

2To ensure the validity of the Taylor expansion, 2∀𝑖, ∇ 𝑙 (𝑧𝑖 , \̂ ) ≼ 𝐼\
should be satisfied.

This is always true because we can shrink the loss without affecting the parameters

In the above two datasets, the generation of labels � depends on 
the same set of features for each instance. To compare the ability of 
diferent methods to discover instance-wise infuence features, by 
setting �11 as a switch feature, we create a new synthetic dataset,
where diferent instances have diferent infuence features. 

• Syn3: If �11 < 0, ����� (�) follows Syn1; otherwise, ����� (�)
follows Syn2.

In addition, we employ four datasets, including Coat [24], Adult [14], 
Bank, and Credit [5], that are widely adopted in previous works 
focusing on modeling tabular data [12, 16]. The statistics of all the 
datasets are summarized in Table 3. In subsequent experiments, we 
divide all instances of each dataset into a training set, a validation 
set and a test set, where each part corresponds to a ratio of 3 : 1 : 1. 

Table 3: Statistics of three synthetic datasets and four real-
world datasets. 

Datasets #Features #Instances 
Syn1 11 30k 
Syn2 11 30k 
Syn3 11 30k 
Coat 47 11k 
Adult 137 49k 
Bank 55 45k 
Credit 30 284k 

5.1.2 Baselines. We choose the most representative methods from 
the two routes as the baselines, including two global feature selec-
tion methods, i.e., Lasso [7] and Tree [8], and four instance-wise 
feature selection methods, i.e., L2X [4], CL2X [20], INVASE [32] 
and TabNet [1]. 
• Lasso [7]: it is a widely used global feature selection method via
adding �1 regularization to the loss of a linear model.

• Tree [8]: it is a global feature selection method via an extremely
randomized trees classifer.

• L2X [4]: it is an instance-wise feature selection method that can
discover a fxed number of infuential features for each instance
through mutual information. It is the frst method to implement
instance-wise feature selection and interpretation.

• CL2X [20]: it is a causal extension of L2X that also discovers a
fxed number of infuential features for each instance via condi-
tional mutual information.

• INVASE [32]: it is an instance-wise feature selection method that
can discover an adaptive number of infuential features for each
instance by minimizing the Kullback-Leibler divergence between
the full conditional distribution and a conditional distribution
that includes only the selected set of features. It is an important
baseline because it best matches the problem we focus on solving
in this paper.

• TabNet [1]: it is an instance-based feature selection method that
uses sequential attention to select the features that need to be
inferred at each decision step. Furthermore, it proposes a novel
high-performance and interpretable deep learning architecture
for tabular data.

5.1.3 Evaluation Metrics. We apply the Area Under the ROC Curve 
(AUC) as the evaluation metric, which is commonly adopted in 
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previous studies of tabular data [1, 31]. Specifcally, the AUC in 
binary classifcation task is calculated by, Í 

�� ∈�+,�� ∈�− 1(�(�� ) > �(�� )) 
��� = , |�+| |�− | 

where �+ is the set of positive instances, �− is the set of negative 
instances, |�+| and −|� | are their sizes; �� is a positive instance, �� 
is a negative instance; �(·) is a classifer. Note that if the predicted 
scores of all positive samples are higher than the predicted scores of 
negative samples, the model will reach AUC= 1 (perfect separation 
of positive/negative samples), i.e., the upper bound of AUC is 1, and 
the bigger the better. 

5.1.4 Implementation Details. For all the methods, a three-layer 
MLP is adopted as a base model. For the search range, �2 regulariza-
tion parameter is in 1 −6 5[ � , 1], learning rate is in [1  �− , 1� − 1], 
hidden layer size is in {50, 100, 150, 200}, and batch size is in 
{64, 128, 256, 512, 1024, 2048}. A special �1 parameter with LASSO 
is in 5 1  [1�−  , 1�− ], and Tree needs to set the number of trees from 3 
to 30. For L2X and CL2X , we set the number of features selected in 
each instance in the range of [2, �]. For our DIWIFT, temperature 
parameter is in [1�−3 , 1]. Regarding the error analysis, we calculate 
the standard deviation of the AUC metric on the test set through 
10 random experiments. The standard deviation is calculated as 
follows: vuut

1 ∑�  1 ∑�    2��������� = (�  �   −  ) , (15)
� �

� �

�=1 � =1 

where � denotes the number of random trials and �� means the 
AUC score at the �-th experiment. 

5.2 RQ1: Performance Comparison 
To verify the efectiveness of our DIWIFT, we conduct the compar-
ative experiments with all the baselines. The detailed results are 
shown in Table 4. The method named “No-selection” is a baseline 
that uses all the features rather than some selected features. From 
Table 4, we have the following observations: 1) the comparison re-
sults between the baselines for instance-wise feature selection and 
global feature selection are inconsistent across diferent datasets. 
TabNet is the best baseline overall. This may be because L2X and 
CL2X can only discover a fxed number of infuential features per 
instance, and INVALSE is not specifcally designed for tabular data. 
However, TabNet does not have these limitations. 2) our DIWIFT 
outperforms all the baselines in most cases, except slightly weaker 
than TabNet on the Syn2 dataset. In particular, our DIWIFT sig-
nifcantly outperforms TabNet on the syn3 dataset with varying 
numbers of infuential features per instance, as well as on all the 
four real-world datasets. 

5.3 RQ2: Visual Verifcation of DIWIFT 
Does our DIWIFT efectively discover instance-wise infuential fea-
tures? To answer this question, we randomly sample 10 instances 
from the Syn3 dataset, of which 5 instances follow Syn1 and the 
remaining instances follow Syn2, since the ground truth of the 
instance-wise infuential features is given in the Syn3 dataset. These 
10 instances are then fed into the feature selection module of our 
DIWIFT to get the feature selection result corresponding to each 

instance. The results are shown in Figure 3, where each row rep-
resents an instance, each column represents a feature, the blue 
squares represent the ground truth of infuential features in each 
instance, and the stars represent the feature selection results of our 
DIWIFT. We can fnd that our DIWIFT can identify the most infu-
ential instance-wise features and removing the most non-infuential 
features. This again verifes the validity of our DIWIFT. 

Figure 3: An example of the feature selection results our DI-
WIFT has on the syn3 dataset, where each row represents an 
instance, each column represents a feature, the blue squares 
represent the ground truth of the infuential features in each 
instance, and the stars represent the selected features by our 
DIWIFT. Note that with �11 as a switch feature, the frst fve 
instances follow Syn1, and the last fve instances follow Syn2. 

5.4 RQ3: Ablation Study 
As described in Section 4.2, the feature selection module and the 
IF calculator are the core modules of our DIWIFT. To analyze their 
respective roles, we conduct ablation studies on our DIWIFT using 
the four real-world datasets. The results are shown in Figure 4, 
where “w/o infuence” means that only the IF calculator is removed 
(i.e., a self-attention module trained using a traditional loss func-
tion is retained), and “No-selection” means that both the feature 
selection module and the IF calculator are removed. We can see 
that removing any module will hurt the performance. In addition, 
“w/o infuence” is weaker than our DIWIFT, but is still better than 
“No-selection”, which also shows the importance of feature selection 
for modeling tabular data. 

5.5 RQ4&RQ5: In-Depth Analysis of DIWIFT 
As described in Section 4.1, most existing works on feature selec-
tion has not considered the variability of infuential features across 
diferent scenarios. Conversely, our DIWIFT can beneft from the 
infuence function to achieve a trade-of between training and vali-
dation distributions, i.e., it is relatively more robust. To evaluate the 
robustness of all the methods under a distribution shift scenario, 
we choose the Coat dataset in our experiments. The Coat dataset 
contains the sets collected from two sources: one is a biased data 
collected through the normal user interactions on an online web-
shop platform, and the other is an unbiased data collected through 
a randomized experiment, in which all items that a user can see are 
randomly assigned by the system. Clearly, there is a distribution 
shift between these two sets. We re-partition Coat, where the set of 
biased data is used as a training set, and the set of unbiased data is 
randomly divided into a validation set and a test set with equal size. 
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Table 4: Results on all the datasets, where the best results are marked in bold and the second best results are underlined. AUC 
is the evaluation metric. 

Method Syn1 Syn2 Syn3 Coat Adult Bank Credit 

No-selection 
Lasso 
Tree 

0.5934±0.0001 
0.6868±0.0012 
0.6786±0.0002 

0.8268±0.0004 
0.8651±0.0006 
0.8840±0.0003 

0.7001±0.0001 
0.7199±0.0002 
0.7241±0.0001 

0.6598±0.0172 
0.6482±0.0009 
0.6538±0.0176 

0.8908±0.0043 
0.8972±0.0045 
0.8966±0.0041 

0.9175±0.0004 
0.8887±0.0004 
0.8854±0.0006 

0.8857±0.0003 
0.9460±0.0005 
0.9251±0.0221 

L2X 
CL2X 
INVASE 
TabNet 

0.6218±0.0083 
0.6262±0.0431 
0.6442±0.0011 
0.6732±0.0006 

0.8758±0.0206 
0.8278±0.0003 
0.8842±0.0002 
0.9068±0.0001 

0.6874±0.0018 
0.6941±0.0015 
0.7765±0.0009 
0.7819±0.0002 

0.6631±0.0093 
0.6627±0.0011 
0.6693±0.0115 
0.6694±0.0010 

0.8985±0.0035 
0.9046±0.0044 
0.8996±0.0036 
0.9074±0.0001 

0.9019±0.0026 
0.9160±0.0001 
0.9179±0.0835 
0.9182±0.0022 

0.9258±0.0090 
0.9122±0.0049 
0.9107±0.0370 
0.9308±0.0347 

DIWIFT 0.6900±0.0019 0.9013±0.0055 0.7851±0.0014 0.6736±0.0034 0.9231±0.0031 0.9231±0.0055 0.9495±0.0019 

Figure 4: Ablation studies on four real-world datasets. 

We then re-execute and evaluate all the methods using the same 
hyperparameter search range, and show the results in Figure 5. 
Comparing with the Coat column in Table 4, we can fnd that all 
the baselines have a signifcant drop in performance, which is even 
weaker than “No-selection”. This shows that the existing feature 
selection methods are susceptible to distribution shift. Conversely, 
our DIWIFT is more robust and has a distinct advantage in diferent 
scenarios. 

Figure 5: Robustness analysis on Coat. 

Finally, we perform a sensitivity analysis of our DIWIFT with 
the pre-trained models of diferent performance. As described in 
Section 4.2.1, the infuence function calculator is an important mod-
ule of our DIWIFT, and its computation requires the parameters of 
a pretrained model �̂ . Since the computed value of the infuence 

function will be used to guide the training of a feature selection 
module, which is another core module of our DIWIFT, it is neces-
sary to analyze the sensitivity of our DIWIFT on pretrained models 
with diferent performance. Next, we examine this sensitivity of our 
DIWIFT by conducting a preliminary experiment on Coat. When 
obtaining the results of our DIWIFT on Coat as shown in Table 4, 
the optimal number of training iterations for the pre-trained model 
is 18. Therefore, we choose the base model when the number of 
training iterations is 8, 10, 12, 14, and 16 as the pre-trained model, 
respectively. We then retrain our DIWIFT and evaluate its perfor-
mance. The results are shown in Figure 6. We can see that our 
DIWIFT is relatively insensitive to the pre-trained model. This ob-
servation is important for deploying our DIWIFT in a real-world 
scenario, as it shows that we can use the same pre-trained model 
for a period of time, which will efectively save training time. 

Figure 6: Sensitivity analysis of our DIWIFT with diferent 
pre-trained models on Coat. 

6 CONCLUSIONS 
In this paper, we propose a new perspective based on the infu-
ence function for instance-wise feature selection and give some 
corresponding theoretical insights. We then propose a new method 
for discovering instance-wise infuential features in tabular data 
(DIWIFT), where a feature selection module with a self-attention 
network is used to compute the selection probabilities of all features 
from each instance, and an infuence function calculator is used 
to calculate the corresponding infuence and guide the feature se-
lection module through a back propagation. We conduct extensive 
experiments on some synthetic and real-world datasets, where the 
results validate the efectiveness and robustness of our DIWIFT. 
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A APPENDIX 

Algorithm 1 Calculating the infuence function �� (� (�, �)) 
Require: The training set after feature reweighting {�� ⊙�� , �� }� 

�=1, 
validation set {{� � ⊙ � � , � � }� 

=1, pre-trained base network �̂ .
� 

1: Calculate the gradient of the validation loss, i.e., � = 
[∇� 

Í� 
=1 � (� � ⊙ � � , � � , �̂ )].� 

2: Initialize �0 
−1� = �. 

3: repeat to get HVP 
4: Uniformly sample some instances from the training set to cal-

culate the estimated Hession matrix �̃ . 
5: Calculate � −1� = � + (� − �̃ )� −1 

� � −1�. 
6: until convergence 
7: Refer to ℎ as the converged HVP, which is the estimation of 
�
�̂  (�)−1 [∇� 

Í� 
=1 � (� � ⊙ � � , � � , �̂ )].� 

8: Calculate ∇� � (�� ⊙ �� , �� , �̂ ). 
9: Calculate the gradient of ℎ� ∇� � (�� ⊙ �� , �� , �̂ ) ∈ R over � . 
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Algorithm 2 Discovering Instance-wise Infuential Features in 
Tabular Data (DIWIFT) 
Require: The training set {�� }��=1, validation set {� � }� 

� =1. 
1: Train a base model to get �̂ . 
2: Initialize all parameters of a feature selection model with a 

self-attention network. 
3: repeat 
4: Fed instances into feature selection model to get probability �� 

and � � using Eq.(12). 
5: Calculate the infuence function in Eq.(13) using the stochastic 

estimation method. 
6: Calculate the loss in Eq.(14). 
7: Do back-propagation to update the parameters of the feature 

selection model. 
8: until convergence 
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