
5

Debiased Representation Learning in Recommendation

via Information Bottleneck

DUGANG LIU, Shenzhen University, China

PENGXIANG CHENG, HONG ZHU, and ZHENHUA DONG, Huawei Noah’s Ark Lab, China

XIUQIANG HE, Tencent FIT, China

WEIKE PAN and ZHONG MING, Shenzhen University, China

How to effectively mitigate the bias of feedback in recommender systems is an important research topic. In

this article, we first describe the generation process of the biased and unbiased feedback in recommender sys-

tems via two respective causal diagrams, where the difference between them can be regarded as the source of

system-induced biases. We then define this difference as a confounding bias and propose a new perspective

on debiased representation learning to alleviate it. Specifically, for the case with biased feedback alone, we

derive the conditions that need to be satisfied to obtain a debiased representation from the causal diagrams.

Then, we propose a novel framework called debiased information bottleneck (DIB) to optimize these condi-

tions and then find a tractable solution for it. The proposed framework constrains the model to learn a biased

embedding vector with independent biased and unbiased components in the training phase, and uses only

the unbiased component in the test phase to deliver more accurate recommendations. We further propose a

variant of DIB by relaxing the independence between the biased and unbiased components. Finally, we con-

duct extensive experiments on a public dataset and a real product dataset to verify the effectiveness of the

proposed framework.

CCS Concepts: • Information systems → Recommender systems;

Additional Key Words and Phrases: Confounding bias, causal diagrams, recommender systems, information

bottleneck

The authors acknowledge the support of National Natural Science Foundation of China Grants No. 61836005, No. 62272315,

and No. 62172283.

This work is an extension of our previous work [26]. Compared with our previous work, we have added the following

new contents in this article: (1) We have developed a new variant as a complement to DIB [26] under relaxed conditions

(i.e., rDIB) in Section 4.3; (2) we have included new experimental results and associated analyses (i.e., new results in Fig-

ures 6(b), 7(a), 7(b), 8, 9, 10(a), 10(b), 10(c), 10(d), 10(e) and 11, and new results in Tables 6 and 7 in Section 5; (3) we have

added more descriptions to further improve the presentation of the article (i.e., some new examples for different variables

in Section 3.3, a formal definition of the studied problem and a new visualization example in Section 3.4, and some guidance

on application of DIB in Section 4.2.4); and (4) we have made many other improvements throughout the whole article.

Authors’ addresses: D. Liu, W. Pan (corresponding author), and Z. Ming (corresponding author), Shenzhen University, 3688#

Nanhai Avenue, Shenzhen, Guangdong 518060 China; emails: dugang.ldg@gmail.com, {panweike, mingz}@szu.edu.cn;

P. Cheng, H. Zhu, and Z. Dong, Huawei Noah’s Ark Lab, Bantian Street, Shenzhen, Guangdong 518129 China; emails:

{chengpengxiang1, zhuhong8, dongzhenhua}@huawei.com; X. He, Tencent FIT, 33# Haitian Second Road, Shenzhen, Guang-

dong 518060, China; email: xiuqianghe@tencent.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

2770-6699/2023/01-ART5 $15.00

https://doi.org/10.1145/3568030

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

https://orcid.org/0000-0003-3612-709X
https://orcid.org/0000-0001-5997-705X
https://orcid.org/0000-0003-2943-7997
https://orcid.org/0000-0002-2231-4663
https://orcid.org/0000-0002-4115-8205
https://orcid.org/0000-0001-6326-9531
https://orcid.org/0000-0001-9310-3460
mailto:permissions@acm.org
https://doi.org/10.1145/3568030
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3568030&domain=pdf&date_stamp=2023-01-27

5:2 D. Liu et al.

ACM Reference format:

Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike Pan, and Zhong Ming. 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck. ACM Trans. Recomm. Syst.

1, 1, Article 5 (January 2023), 27 pages.

https://doi.org/10.1145/3568030

1 INTRODUCTION

As a feedback loop system, a recommender system is associated with various biases during the
interaction between the users and the system, such as position bias [3, 45], selection bias [30, 35],
and popularity bias [1, 7]. Ignoring these biases will cause a recommendation model to converge
to a biased sub-optimal solution, and have harmful effects on a recommender system and the users,
such as filter bubbles [18], echo chambers [12], and unfairness [11, 13]. Therefore, how to effec-
tively alleviate the bias of the feedback data collected in a recommender system is an important
problem. In addition, since most of the existing recommendation scenarios have their own rela-
tively complete models for deployment, a good debiasing framework needs to be independent of
a specific architecture.

The previous works solving the bias problem in recommender systems mainly include the
following four lines: heuristic-based methods [28, 51], inverse propensity score-based meth-
ods [35, 52, 53], unbiased data augmentation methods [6, 25, 46, 54], and some theoretical
tools-based methods [33, 34]. The first line assumes that user feedback depends on certain specific
factors and models this relationship, such as item features [14, 22] and public opinions [24, 27].
The second line uses the inverse propensity score as the sample weight to adjust the biased
feedback distribution. The third line introduces a special uniform data as an unbiased target
data to guide the training of the biased feedback. The last line aims to couple certain theoretical
tools with the bias problem, and uses these theoretical tools to design some debiasing models,
such as information bottleneck and causal inference techniques [44, 47, 48, 50]. However, most
methods ignore the bias generation process, and thus may only be applicable to a certain type of
bias problem.

In this article, inspired by [15, 20], we first describe the generation process of the biased feedback
and unbiased feedback in recommender systems via two respective causal diagrams, where the
difference between them can be viewed as the source of system-induced biases. We define this
difference as a confounding bias, which can be viewed as the total offset on the observed feedback
labels due to the system-induced biases. In order to simplify and match the main models in the
recommendation field, we generally assume that the confounding bias will be reflected in the
embedding representation of a recommendation model trained with a biased feedback data. This
is because they will blindly learn the offset on the feedback labels due to the confounding bias.
Based on this assumption, we propose a new perspective on debiased representation learning to
alleviate the confounding bias. Further, in scenarios where only biased feedback is available, we
propose a novel framework called debiased information bottleneck (DIB) based on information
theory as a solution for debiased representation learning. Moreover, we also propose a variant of
DIB (i.e., relaxed debiased information bottleneck (rDIB)) that considers relaxation of the
optimization conditions adopted in DIB.

Specifically, the proposed framework is based on our observations in the causal diagrams of
the feedback generation process described above. In the training phase, we constrain the model to
learn a special biased embedding vector, including a biased component responsible for the effect of
the confounding bias, and an unbiased component responsible for the effect of the user’s true pref-
erence. In other words, a biased component is expected to capture the total offset on the observed

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

https://doi.org/10.1145/3568030

Debiased Representation Learning in Recommendation via Information Bottleneck 5:3

feedback labels due to the confounding bias, and an unbiased component is expected to capture the
ideal part in the user’s feedback label. We derive the conditions that need to be satisfied to obtain
such a desired biased embedding vector and then use them as the optimization objective of DIB.
Furthermore, a variant of DIB can be obtained by relaxing the independence condition between
the biased and unbiased components, i.e., allowing a shared part between the two components. To
remove the influence of the confounding bias in the test phase, we only retain the unbiased com-
ponent in the embedding vector in the process of recommending items, i.e., a debiased embedding

vector.
The proposed framework has better interpretability because it is directly derived from the causal

diagram of the bias generation process. The proposed framework can also be easily integrated
with most existing recommendation models, since it does not depend on a specific architecture.
In addition, the proposed framework can be used to solve a more general bias problem, since the
confounding bias is essentially the effect of a mixture of system-induced biases. Finally, we conduct
extensive experiments on a public dataset and a real product dataset to verify the effectiveness
of the proposed method, including standard unbiased tests, ablation studies, and some in-depth
analysis of the proposed method.

2 RELATED WORK

In this article, we focus on designing information bottleneck-based solutions to mitigate a
confounding bias from the perspective of debiased representation learning. Therefore, we firstly
review some related work about debiasing methods in recommender systems, and then briefly
introduce the information bottleneck and its applications in machine learning.

2.1 Debiasing in Recommender Systems

Solving the bias problem in recommender systems is an important topic that has gradually received
more attention by both the researchers and practitioners from the academia and industry. The ex-
isting works on debiasing in recommender systems can be categorized into four lines, including
heuristic-based methods, inverse propensity score-based methods [35, 52, 53], unbiased data aug-
mentation methods [6, 25, 46, 54], and some theoretical tools-based methods [36, 42, 49, 55]. A
heuristic-based method links a user’s feedback with different specific factors, such as item fea-
tures [14, 22], user ratings [28, 51], and public opinions [24, 27], and uses some probabilistic graph-
ical models for modeling. An inverse propensity score-based method corrects the biased feedback
distribution by introducing some sample weights. An unbiased data augmentation method guides
the model training on biased feedback by introducing an unbiased data collected by a special uni-
form policy. Since the collection process of an unbiased data is very expensive in practice, some
recent methods directly perform debiasing on one single biased data with some theoretical tools,
such as information bottleneck [47], positive-unlabeled learning [34], asymmetric tri-training [33],
and causal inference techniques [44, 48, 50]. Our DIB falls into the fourth line, but differs signifi-
cantly from the existing works. On the one hand, we are the first to analyze the generation process
of feedback events through the lens of causal inference, thereby identifying the source of system-
induced biases and addressing them. This means that our DIB is expected to be able to mitigate
a mixture of system-induced biases suffered by feedback events, whereas the vast majority of the
existing works aim to address a specific bias. On the other hand, our DIB is designed based on
the idea of debiased representation learning, and it only needs to manipulate the representation
of the integrated backbone model without changing the other aspects. Conversely, most of the
existing works require a custom model architecture or training method. Therefore, our DIB is of
better scalability and flexibility.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:4 D. Liu et al.

2.2 Information Bottleneck

The information bottleneck method is a technique in information theory for finding the best trade-
off between accuracy and complexity [40]. It has been regarded as a theoretical foundation of
deep learning and been applied to many fields, such as robust or invariant representation learn-
ing [10, 29], disentangled representation learning [2], compressed representation learning [9],
causal inference [31], and feature detection [37]. The works most relevant to ours in this line
are [8, 17]. They focus on learning disentangled representation of texts through customized infor-
mation bottleneck loss when the labels that only indicate the style information of texts are given.
This representation includes independent style embedding and content embedding, which is simi-
lar to our expectation that the biased and unbiased components in the biased embedding vector are
as independent as possible. However, these methods are not applicable to recommender systems
since the labels in the recommendation field indicate a mixture of user preferences and biases. In
addition, as far as we know, there is only one work that considers the use of information bottleneck
to solve the bias problem in recommender systems. That work is based on contrastive analysis of
feature embedding, which proposes a counterfactual variational information bottleneck method
to solve the selection bias in recommender systems [47]. In contrast to this work, our DIB can ef-
fectively mitigate a mixture of system-induced biases, and act on arbitrary layers of the backbone
model to effectively discriminate between the biased and unbiased components.

3 PRELIMINARIES

3.1 Notations

LetX = X1×· · ·×Xd be a d-dimensional observed feature space andY = {0, 1} be a label space. In
this article, we focus on solving the bias problem in recommender systems. Specifically, suppose
we have the following N events

(x1,y1), . . . , (xN ,yN), (1)

where x i = (x i
1, . . . ,x

i
d

) ∈ X and yi ∈ Y are the feature vector and the label of the i-th event,
respectively. According to the nature of feedback in a typical recommender system, we assume
that the label y satisfies

y =
⎧⎪⎨⎪⎩

1 the event was displayed and clicked,

0 the event was displayed but not clicked.
(2)

An event represents an interaction between a user and a system. For example, a commercial sys-
tem recommends a movie or displays an advertisement to a user, and the user provides some
corresponding feedback. In particular, when no side information is available, i.e., only the user ID
u and the item ID i are provided, an event can be simplified to (x = (u, i),y).

The feedback events are used to train the recommendation model, which evaluates the users’
preferences on the item set as accurately as possible by learning a decision function ŷ (x) ∈
{−∞,+∞}. In practice, the decision function is usually implemented based on a low-rank model
and a neural network model, which are also included in our experiments. Both of them apply an
embedding vector z∗ as a representation of the input x . Therefore, we can describe the decision
function as a mapping process from the representation z∗ to the label ŷ, which passes through
one or more hidden layers hj . This process can be formalized as a Markov chain of successive
representations [47], y → x → z∗ → h1 → · · · → hL → ŷ.

3.2 Information Theory

In this subsection, we briefly introduce some necessary background knowledge about information
theory so that the reader can easily understand the description of the method and derivations

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:5

in Section 4, including mutual information and its relationship with information bottleneck and
entropy.

Mutual information is a metric to calculate the correlation between two random variables (such
as a and b), and is denoted as I (a;b). The larger the mutual information, the higher the correlation
between the random variables a and b. When the mutual information is 0, the random variables a
and b are considered to be independent of each other. Mutual information also has some special
properties, such as non-negativity I (a;b) ≥ 0 and symmetry I (a;b) = I (b;a). In real applications,
mutual information I (a;b) can be transformed into the form of KL divergence or entropy, i.e.,
I (a;b) = Eb

[
DKL (p (a |b) ‖ p (a))] and I (a;b) = H (b)−H (b |a). An important application of mutual

information is the information bottleneck [40], and can be expressed as

min I (x ;z) − β I (z;y) , (3)

where z is the representation obtained by encoding x . Based on the definition of mutual informa-
tion, we can find that the goal of the information bottleneck is to maintain the correlation between
z andy while reducing that between x and z, so as to achieve an optimal balance between accuracy
and complexity. The correlation between variables a and b can be further denoted as conditional
mutual information I (a;b |c) given a third variable c . Similarly, we can relate conditional mutual
information I (a;b |c) to entropy, i.e., I (a;b |c) = H (a |c) − H (a |c,b). In addition, we can build a
bridge between conditional mutual information I (a;b |c) and mutual information I (a;b) via the
chain rule of mutual information, i.e., I (a;b) = I (a; c) − I (a; c |b) + I (a;b |c) [39].

3.3 Confounding Bias

To better understand the source of system-induced biases and address them in a targeted manner,
in Figure 1(a), we show the generation process of feedback events in recommender systems from
the perspective of causal inference. We first give definitions and examples of some key symbols
used in Figure 1(a), and then describe the generation process in detail.

— The input variables x are equivalent to the feature vector, which may include user features,
item features, context features, and so on. For example, one of the simplest input variables
is to include only the user ID u and the item ID i , i.e., x = (u, i).

— The outcome y is equivalent to the user’s feedback label for the displayed item. For example,
a click feedback can be denoted as y = 1, and a non-click feedback as y = 0. Note that the
user’s feedback label is usually provided by two parts, which are the user’s true preferences
and the offset caused by a mixture of system-induced biases.

— The treatment T in recommender systems can be thought of as referring to a recommenda-
tion strategy; that is, which items are selected by the system to combine with the current
item, and in which layout and arrangement these items are displayed to the current user. In
other words, it reflects the presentation strategy of the previous recommendation model for
the current user and item. For example, a user sees a group of items in a nine-box grid that
contains a specific item, while most of the other items are popular and are ranked at the top.
Obviously, it is difficult to quantify the treatment T accurately.

— The instrumental variables I are a subset of features that only affect the treatmentT , i.e., they
lead to different recommendation strategies, resulting in different offsets on the feedback
labels and have no impact on the user’s true preferences. For example, the feature “device
size” will affect the presentation of recommended items, but generally does not reflect a
user’s preferences.

— The confounder variablesC are a subset of features that affect both the treatmentT and the
user’s true preferences, i.e., they also lead to different recommendation strategies, and have

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:6 D. Liu et al.

Fig. 1. (a) A causal diagram of biased feedback, where x and y are known variables, blue arrows indicate the

indirect effect, and red arrows indicate the direct effect. (b) A causal diagram of unbiased feedback where

the indirect effect is truncated.

an impact on the user’s true preferences while bringing different offsets on the feedback
labels. For example, the feature “income level” will affect the choice of displayed items, and
to a certain extent, it can reflect the user’s preferences.

— The adjustment variables A are a subset of features that only affect the user’s true prefer-
ences, i.e., they largely reflect the ideal part of the user’s feedback label that is provided by
true preferences. For example, they might be contextual features like weather and mood that
only influence user decisions.

Based on the above definitions, Figure 1(a) means that the input variables x (i.e., the feature
vector) can be divided into three non-overlapping parts, including some instrumental variables
I , some confounder variables C , and some adjustment variables A. As two special variables that
affect the treatmentT , the instrumental variables I and the confounder variablesC can determine
the treatment T , and they have an indirect effect on the outcome y (i.e., the label) through the
path {I ,C} → T → y. An indirect effect can be seen as the total offset on the user’s feedback label
produced by a mixture of system-induced biases. As two special variables that affect the user’s true
preferences, the confounder variables C and the adjustment variables A have a direct effect on y
through the path {C,A} → y. A direct effect can be seen as the ideal part in the user’s feedback label,
which is generated by the user’s true preferences, i.e., the ground-truth feedback label. Similar
causal diagrams can also be found in previous works on treatment effect estimation [15, 20], and
we follow their assumptions, i.e., strong ignorability [32].

Different recommendation strategies will produce different indirect effects on feedback events
by influencing the treatmentT . This will lead to the inherent variability in the feedback events, and
make most recommendation models that aim to minimize the error of the observed feedback not
have good generalizability. Conversely, because the direct effect does not depend on the treatment
T , it can be considered as the stable and true user preferences. This means that if we can cut
off the indirect effect, i.e., we have a special strategy that only depends on the direct effect, then
the collected feedback events are relatively stable and unbiased. We show the generation process
of this unbiased feedback event in Figure 1(b). By comparing Figure 1(a) and (b), we call the bias
brought by the recommendation strategy the confounding bias. Since the recommendation strategy
depends only on the deployed system, the confounding bias is essentially the total offsets in the
observed feedback labels resulting from a mixture of system-induced biases, e.g., the feedback
labels may suffer from both the position bias and popularity bias.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:7

Fig. 2. An example of debiased representation learning. The original representation obtained by a traditional

recommendation model is corrupted by the confounding bias due to blindly learning the total offsets on the

observed feedback labels resulting from the confounding bias. The debiased representation learning aims to

remove the influence of the confounding bias to obtain the ideal representation by restoring the ground-truth

feedback labels.

Definition 3.1 (Confounding Bias). Suppose that the variables x , the outcomey, the indirect effect
{I ,C} → T → y, and the direct effect {C,A} → y from x to y are given. Confounding bias refers
to the total offsets of the observed feedback labels in recommender systems due to the indirect
effects.

3.4 Problem Formulation

In practice, it may be difficult to directly group the variables x to obtain the instrumental variables
I , the confounder variables C , and the adjustment variables A. Instead, since the goal of most
recommendation models is to learn an accurate embedding representation vector derived from the
variables x , we make a general assumption, which is intuitively reasonable. The representation z∗

learned by a traditional recommendation model, which is a good proxy for the variablesx , naturally
suffers from the biased variables in x . In other words, a traditional recommendation model will
blindly learn the total offsets on feedback labels due to the confounding bias, resulting in z∗ being
biased. Since the correspondence between the biased variables and the semantics of the dimension
in z∗ is difficult to be obtained, z∗ is also indistinguishable.

Assumption 3.2. The confounding bias will be reflected in the embedding representation learned

by a traditional recommendation model, since it will blindly learn the offsets on the observed feedback

labels produced by the confounding bias. And the bias will usually corrupt all the dimensions, i.e., the

original representation z∗ is biased and indistinguishable.

Based on this assumption, we can equate the solution to the bias problem in recommender
systems, especially the system-induced biases, as how to remove the corruption caused by the
confounding bias from the embedding representation. We call this new perspective debiased repre-

sentation learning, a schematic diagram of which is shown in Figure 2. On the other hand, although
previous works have shown that the unbiased feedback can be obtained through a uniform pol-
icy [6, 25, 46, 54], i.e., for user requests, the system randomly samples some items from a candidate
set, and displays them after some random arrangement, feedback events can only be collected
within a particularly limited network traffic as this policy would hurt the users’ experiences and
the revenue of the platform. This means a more engaging scenario is that only the biased feed-
back is available. Therefore, in this article, we focus on mitigating the confounding bias through
debiased representation learning when only biased feedback is available.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:8 D. Liu et al.

Fig. 3. (a) In the training phase, the model obtains a special biased embedding vector from the variables

x , which includes a biased component r and an unbiased component z. (b) In the test phase, the biased

component r is discarded, and the unbiased component z is used in the recommendation process.

4 THE PROPOSED METHOD

4.1 Debiased Information Bottleneck

We illustrate the main idea of the proposed framework in Figure 3. In the training phase (i.e.,
Figure 3(a)), we constrain the model to obtain a special biased representation vector from the vari-
ables x , which includes two independent components, i.e., a biased component r and an unbiased
component z. The biased component r is responsible for the indirect effect, while the unbiased
component z is responsible for the direct effect. This means that we expect a biased component r
to capture the total offsets in the observed feedback label caused by a mixture of system-induced
biases, and an unbiased component z to capture the ideal part of the feedback label generated by
the user’s true preferences. Note that this special biased embedding vector, i.e., [r , z], is easier to
distinguish the influence of the confounding bias than the original representation z∗, since r ex-
plicitly encodes the confounding bias and z avoids the effect of the confounding bias. In the test
phase (i.e., Figure 3(b)), we discard the biased component and only use the unbiased component
for more accurate recommendation.

From Figure 3(a), we can see that in order to achieve a more accurate recommendation, we must
meet at least the following four conditions: (1) to avoid the influence of the biased variables, the
unbiased component z should not overfit the variables x ; (2) due to the role of the direct effect, the
unbiased component z needs to predict the label y as accurately as possible; (3) the biased compo-
nent r and the unbiased component z must be as independent as possible to get a better distinction,
i.e., z ⊥ r ; and (4) due to the role of the indirect effect, the biased component r is also beneficial to
predict the label y to a certain extent. Note that we have not constrained the relationship between
the biased component r and the variables x , because the degree of dependence between them is
determined by the strength of the bias in the feedback data, and blindly optimizing it may lead to
bad results. Inspired by information theory, we can then derive the required objective function to
be minimized from the above analysis:

LDI B := β I (z;x)︸���︷︷���︸
1©
− I (z;y)︸�︷︷�︸

2©
+γ I (z; r)︸��︷︷��︸

3©
−α I (r ;y)︸���︷︷���︸

4©
, (4)

where term 1© is a compression term that describes the mutual information between the variables
x and the unbiased embedding z; term 2© is an accuracy term that describes the performance of the

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:9

unbiased embedding z; term 3© is a de-confounder penalty term, which describes the dependency
degree between the biased embedding r and the unbiased embedding z; and term 4© is similar to
term 2©, which is used for the potential gain from the biased embedding r . Note that β , γ , and α are
the weight parameters. Since terms 1© and 2© in Equation (4) are similar to a standard information
bottleneck, we call the proposed framework a debiased information bottleneck, or DIB for short.
By optimizing LDI B , we expect to get the desired biased and unbiased components, and can then
prune the confounding bias. Note that Equation (4) is a necessary optimization objective to drive
the model toward the debiased embedding vector, and introducing more reasonable targets based
on Equation (4) may help to obtain a more accurate debiased embedding vector, which we leave
to future work.

4.2 A Tractable Optimization Framework

LDI B is clearly an intractable optimization function, especially because of the key term I (z; r)
used to induce the desired embedding separation. Next, we discuss the optimization of the de-
confounder penalty term I (z; r) and the compression term I (z;x), and derive an upper bound of
Equation (4). Finally, we describe a tractable solution for the objective function LDI B according to
the upper bound.

4.2.1 The De-Confounder Penalty Term. Based on the chain rule of mutual information, we have
the following equation about the de-confounder penalty term 3© in Equation (4):

I (z; r) = I (z;y) − I (z;y |r) + I (z; r |y) . (5)

We further inspect the term I (z; r |y) in Equation (5). Since the distribution of z depends solely
on the variables x , and x is affected by y, we have H (z |y, r) = H (z |y), where H (·|·) denotes the
conditional entropy [17, 29]. Combining the properties of mutual information, we have

I (z; r |y) = H (z |y) − H (z |y, r) = H (z |y) − H (z |y) = 0. (6)

By substituting Equation (6) into Equation (5), we have

I (z; r) = I (z;y) − I (z;y |r) . (7)

Since the term I (z;y |r) in Equation (7) is still difficult to be calculated, we use the form of condi-
tional entropy to further simplify it,

I (z; r) = I (z;y) − H (y |r) + H (y |z, r) . (8)

Finally, combining Equations (4) and (8), we can rewrite the objective functionLDI B in Equation (4)
as follows:

LDI B = β I (z;x) − I (z;y) + γ I (z; r) − α I (r ;y)

= β I (z;x) − I (z;y) + γ
[
I (z;y) − H (y |r) + H (y |z, r)

] − α I (r ;y)

= β I (z;x) − (1 − γ) I (z;y) − γH (y |r) + γH (y |z, r) − α I (r ;y) .

(9)

4.2.2 The Compression Term. We can find that only the compression term I (z;x) is related to
the variables x in Equation (9). To optimize it directly, we describe a simple and precise expression
of this mutual information using a method similar to that in [17, 47]. First, based on the relationship
between mutual information and Kullback-Leibler (KL) divergence, the compression term I (z;x)
can be calculated as follows:

I (z;x) = Ex
[
DKL (p (z |x) ‖ p (z))] =

∑
x

p (x)
∑

z

p (z |x) logp (z |x) −
∑

z

p (z) logp (z). (10)

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:10 D. Liu et al.

However, the marginal probability p (z) =
∑

x p (z |x)p (x) is usually difficult to be calculated in
practice. We use variational approximation to address this issue, i.e., we use a variational distri-
bution q(z) instead of p (z). According to Gibbs’ inequality, we know that the KL divergence is
non-negative. Therefore, we can derive an upper bound of Equation (10),

DKL (p (z) ‖ q (z)) ≥ 0

⇒ −
∑

z

p (z) logp (z) ≤ −
∑

z

p (z) logq(z)

⇒ DKL (p (z |x) ‖ p (z)) ≤ DKL (p (z |x) ‖ q (z)) .

(11)

Similar to most previous works [23], we can assume that the posteriorp (z |x) is a Gaussian distri-
bution (i.e., p (z |x) = N (μ (x), diag{σ 2 (x)})), where μ (x) is the encoded embedding of the variables
x and diag{σ 2 (x)} is the diagonal matrix indicating the variance. Through the reparameterization
trick, the embedding z can be generated according to z = μ (x) + ϵ � σ (x), where ϵ ∼ N (0, I).
Obviously, if we fix σ (x) to be an all-zero matrix, z will reduce to a deterministic embedding. On
the other hand, the prior q(z) is assumed to be a standard Gaussian variational distribution, i.e.,
q(z) = N (0, I). Finally, we can rewrite the above upper bound,

DKL (p (z |x) ‖ q (z)) =
1

2
��μ (x)��2

2 +
1

2

∑
d

(
σ 2

d − logσ 2
d − 1

)
, (12)

where σ 2
d

is an element in diag{σ 2 (x)}, i.e., diag{σ 2 (x)} = {σ 2
d
}D
d=1

. This means that for a determinis-
tic embedding z, we can optimize this upper bound by directly applying the �2-norm regularization
on the embedding vector z, which is equivalent to optimizing the compression term I (z;x). Note
that the compression term in previous works acts on the entire biased representation z∗, and we
only compress the unbiased component z of the representation.

4.2.3 Solution. For the mutual information I (z;y) in Equation (9), we have I (z;y) = H (y) −
H (y |z). Since H (y) is a positive constant and can be ignored, we have the following inequality:

I (z;y) ≥ −H (y |z) . (13)

This inequality also applies to the mutual information I (r ;y) in Equation (9). Combining
Equations (12) and (13), we can rewrite Equation (9) as follows:

LDI B = β I (z;x) − (1 − γ) I (z;y) − γH (y |r) + γH (y |z, r) − α I (r ;y)

≤ β ��μ (x)��2
2 + (1 − γ) H (y |z) − (γ − α)H (y |r) + γH (y |z, r).

(14)

Finally, we get a tractable solution for LDI B ,

L̂DI B = (1 − γ) H (y |z)︸�����������︷︷�����������︸
(a)

− (γ − α)H (y |r)︸�����������︷︷�����������︸
(b)

+γH (y |z, r)︸������︷︷������︸
(c)

+ β ��μ (x)��2
2︸�����︷︷�����︸

(d)

, (15)

where 0 < α < γ < 1. Let ŷr , ŷz , and ŷz,c be the predicted labels generated by the biased component
r , the unbiased component z, and the biased embedding vector [z, r] as shown in Figure 3(a), re-
spectively. The final objective function also contains four terms: term (a) denotes the cross entropy
between ŷz and y; term (b) denotes the cross entropy between ŷr and y; term (c) denotes the cross
entropy between ŷz,r andy; and term (d) is the regularization term used to improve the robustness
of the embedding representation. A complete optimization process of DIB is shown in Algorithm 1.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:11

ALGORITHM 1: Debiased Information Bottleneck (DIB)

Input: Observed feedback events
{
(x ,y)

}
; hyper-parameters α , β,γ ;

1: Initialize the parameters of the model θ (including the biased embedding representation r and
the unbiased embedding representation z);

2: repeat

3: Calculate term (c) in Equation (15) by the concatenation of z and r , i.e., H (y |z, r);
4: Calculate term (a) in Equation (15) by z, i.e., H (y |z) (to keep the dimensions consistent, z

is concatenated with a zero vector with the same dimension of r);
5: Calculate term (b) in Equation (15) by r , i.e., H (y |r) (similar to the above operation);
6: Calculate term (d) in Equation (15) by applying a regularization to z;

7: Update the model parameters θ via stochastic gradient descent based on L̂DI B (i.e.,
Equation (15));

8: until training loss stops to decrease.

4.2.4 Remarks. We include discussions about Equation (15) from two perspectives in order to
intuitively show why our DIB is effective in mitigating the confounding bias.

— Note that we often have no specific knowledge of a mixture of system-induced biases, and it
is also difficult to identify them from the collected feedback events in practice. Fortunately,
we can try to infer them by the peculiar nature of bias information. Recall that the observed
feedback labels contain two sources of information, i.e., a user’s true preferences and the
offset generated by the confounding bias. Since the confounding bias does not produce a
large offset, the user’s preferences are usually dominant. This means that without the help
of the user’s true preferences, the bias information is not able to estimate the user’s feedback
label well, and when combined with the user’s true preferences, there will be an overfitting
to the user’s feedback label. Since we expect z and r to encode the user’s true preferences and
the bias information, respectively, the above two cases can be considered corresponding to
terms (b) and (c) in Equation (15). Combined with terms (a) and (d) that ensure the effect of
z, Equation (15) is expected to distinguish the bias information under reasonable parameter
settings.

— The confounding bias can also be seen as a distribution shift since the offset on the feed-
back labels produced by the confounding bias results in a different distribution than the
ground-truth feedback labels. This means that we can also interpret debiased representation
learning in terms of stable learning or robust learning. Let us consider that r encodes noisy
information that is detrimental to the estimation of the feedback labels, and the term (b) of
Equation (15) constrains its range of variation. The terms (a) and (c) in Equation (15) con-
strain z not only to estimate the feedback labels well by itself, but also to estimate them as
well as possible in the presence of noise. With this, z is expected to perform relatively well
under different distributions, i.e., we can think that it is encoding the user’s true preferences
and is stable and unbiased under varying degrees of the confounding bias.

When setting the weights of Equation (15) in practice, two aspects need to be considered. Firstly,
since the unbiased component z is responsible for the user’s true preferences and is used for pre-
diction, term (a) needs a larger weight to ensure model effectiveness, i.e.,γ is set to a smaller value.
For example, we search for the best value from 0.001 to 0.2 in the experiments. Secondly, term
(b) needs a positive weight because the biased component r needs to confuse the unbiased
component z during model training, i.e., γ − α > 0 ⇒ α < γ . The proportion of the dimensions
occupied by the biased component r and the unbiased component z in the biased representation

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:12 D. Liu et al.

Fig. 4. (a) In the training phase, the biased component r consists of an independent part r ′ and a shared part

s , while the unbiased component z consists of an independent part z′ and the same shared part s as that of

r . (b) In the test phase, the independent part r ′ of the biased component r is discarded, and the unbiased

component z, including z′ and s , is used in the recommendation process.

vector shown in Figure 3(a) is adjustable, where intuitively the latter should have a higher
proportion. We set them to the same proportion (i.e., 50%) in our experiments for simplicity.

The proposed DIB is compatible with most existing recommendation models since it does not
depend on a specific architecture. In particular, when applying DIB to neural network–based rec-
ommendation models in practice, it is optional to use the output of a layer in the network as the
biased representation vector. For example, it can be defined in the feature encoding layer, fea-
ture interaction layer, or prediction layer. For simplicity, we use the form defined on the feature
encoding layer in our experiments. In addition, DIB is also suitable for scenarios where no side in-
formation is available. Since the user activity and item popularity are potential influencing factors
of recommendation strategies, the features related to the users and items may have the property
of the confounder variablesC , that is, there are still some indirect effects that need to be removed.

4.3 Relaxed Debiased Information Bottleneck

In Section 4.1, we expect the biased representation vector to be split into two mutually indepen-
dent components, i.e., a biased component r and an unbiased component z. This may be overly
restrictive in some cases, especially with some indistinguishable confounding variables. Therefore,
in this section, we propose a variant of DIB by relaxing this constraint, which is thus called rDIB.
Specifically, we allow a shared part between the biased component r and the unbiased component
z during the training phase. This means that the biased component r consists of an independent
part r ′ and a shared part s , while the unbiased component z consists of an independent part z ′ and
the same shared part s as that of r . In the test phase, we still only use the unbiased component z
for more accurate recommendations, which is equivalent to discarding the independent part r ′ of
the biased component r . We illustrate the main idea of rDIB in Figure 4.

Based on Figure 4 and the analysis in Section 4.1, we can derive a desired objective function to
be minimized,

Lr DI B := β I (z ′, s;x)︸�������︷︷�������︸
1©

− I (z ′, s;y)︸�����︷︷�����︸
2©

+γ I (z ′; r ′)︸�����︷︷�����︸
3©

−α I (r ′, s;y)︸�������︷︷�������︸
4©

. (16)

Comparing Equation (16) with Equation (4), we can find that the difference is that a shared part
s acts on the unbiased component z and the biased component r in the first two terms and the

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:13

ALGORITHM 2: Relaxed Debiased Information Bottleneck (rDIB)

Input: Observed feedback events
{
(x ,y)

}
; hyper-parameters α , β,γ ;

1: Initialize the parameters of the model θ (including independent biased embedding repre-
sentation r ′, independent unbiased embedding representation z ′, and shared embedding
representation s);

2: repeat

3: Obtain the biased embedding vector by concatenating the three embedding representa-
tions, i.e., [r ′, s, z ′];

4: Calculate term (c) in Equation (20) by masking the shared part s with 0, i.e., [r ′, 0, z ′] used
in H (y |z ′, r ′);

5: Calculate term (a) in Equation (20) by masking r ′ and the concatenation of s and r ′ with
0, respectively, i.e., [0, s, z ′] used in H (y |z ′, s) and [0, 0, z ′] used in H (y |z ′);

6: Calculate term (b) in Equation (20) by masking z ′ and the concatenation of s and z ′ with
0, respectively, i.e., [r ′, s, 0] used in H (y |r ′, s) and [r ′, 0, 0] used in H (y |r ′);

7: Calculate term (d) in Equation (20) by applying a regularization to [0, s, z ′];

8: Update the model parameters θ via stochastic gradient descent based on L̂r DI B (i.e.,
Equation (20));

9: until training loss stops to decrease.

fourth term, respectively, and the third term applies only to the independent parts of the two com-
ponents. Lr DI B is also an intractable optimization function. And by referring to the description in
Section 4.2, we next derive its upper bound as a tractable solution. Firstly, similar to the procedure
in Section 4.2.1, we can obtain the equation corresponding to term 3© in Equation (16),

I (z ′; r ′) = I (z ′;y) − H (y |r ′) + H (y |z ′, r ′) . (17)

Combining Equations (17) and (16), we can rewrite the objective function Lr DI B of Equation (16)
as follows:

Lr DI B = β I (z ′, s;x) − I (z ′, s;y) + γ I (z ′; r ′) − α I (r ′, s;y)

= β I (z ′, s;x) − I (z ′, s;y) + γ
[
I (z ′;y) − H (y |r ′) + H (y |z ′, r ′)] − α I (r ′, s;y) .

(18)

Secondly, referring to the procedure in Section 4.2.2, we can replace the first term of Equation (18)
by directly applying the �2-norm regularization to the unbiased component z (i.e., [s, z ′]),

Lr DI B = β ��μ (x)��2
2 − I (z ′, s;y) + γ

[
I (z ′;y) − H (y |r ′) + H (y |z ′, r ′)] − α I (r ′, s;y) . (19)

Finally, we use the inequality in Equation (13) to further convert the mutual information terms in
Equation (19) into the corresponding entropy form, and then obtain a tractable solution for Lr DI B ,

L̂r DI B = H (y |z ′, s) − γH (y |z ′)︸���������������������︷︷���������������������︸
(a)

−γH (y |r ′) + αH (y |r ′, s)︸�����������������������︷︷�����������������������︸
(b)

+γH (y |z ′, r ′)︸��������︷︷��������︸
(c)

+ β ��μ (x)��2
2︸�����︷︷�����︸

(d)

. (20)

We can observe that the difference from Equation (15) is that both the unbiased and biased com-
ponents include two optimization terms that consider only the independent part and the shared
part, respectively. A complete optimization process of rDIB is shown in Algorithm 2.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments with the aim of answering the following
five key questions.

— RQ1: How does the proposed framework perform in an unbiased evaluation?

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:14 D. Liu et al.

Table 1. Statistics of the Datasets

Yahoo! R3 Product

#Feedback P/N #Feedback P/N

Training set 254,713 67.02% 4,160,414 2.21%
Validation set 56,991 67.00% 897,449 2.15%

Test set 54,000 9.64% 225,762 1.03%

P/N represents the ratio between the numbers of positive and negative

feedback.

— RQ2: What is the role of each term in the proposed framework?
— RQ3: What is the effect of the proposed variant (i.e., rDIB)?
— RQ4: What are the characteristics of the proposed framework?
— RQ5: How does the proposed framework perform in real-world recommendation scenarios?

5.1 Experiment Setup

5.1.1 Datasets. In order to evaluate the performance of the model in mitigating the confound-
ing bias, we need a test set that includes unbiased feedback events to simulate the ideal distribution.
We consider both a public dataset and a real-world product dataset in the experiments, where the
statistics are described in Table 1.

— Yahoo! R3: This dataset contains ratings collected from two different sources on Yahoo!
Music services, containing 15,400 users and 1,000 songs. The user set consists of ratings
provided by users’ subjective choices and is therefore considered to be biased. The random
set consists of ratings collected during an online survey, i.e., each of the first 5,400 users is re-
quired to provide ratings on 10 randomly displayed songs, which can be considered unbiased.
We binarize each rating by checking whether it is larger than 3 and then obtain some posi-
tive feedback (i.e.,y = 1) and negative feedback (i.e.,y = 0). Note that the missing entries are
treated as negative feedback. For the user set, we randomly split it into two subsets from the
user level: 80% of each user’s feedback for training and the remaining 20% for validation to
tune the hyper-parameters. The random set is used as the test set for evaluating our method.
Note that the random set with unbiased property is not available during the training phase.

— Product: This is a large-scale dataset for CTR prediction, which includes 2 weeks of user
click records from a real-world advertising system. This data covers 122 displayed adver-
tisements and approximately 300,000 users. Similarly, it contains a user set and a random
set. The user set is recorded when the system is using several traditional ranking-oriented
recommendation policies, and the random set is recorded using a uniform policy. Next, we
randomly split the user set into two subsets in the same way as that for Yahoo! R3, i.e., 80%
feedback is used as the training set, and the rest is used as the validation set. The entire
random set is used as the test set for evaluating our method. Note that the random set with
unbiased property is also unavailable during the training phase.

5.1.2 Evaluation Metrics. For all experiments, we employ four evaluation metrics that are
widely used in recommender systems, including the area under the ROC curve (AUC), pre-

cision (P@K), recall (R@K), and normalized discounted cumulative gain (nDCG). We set
the maximum length of the recommendation list as 50, and choose AUC as our main evaluation
metric because it is one of the most important metrics in industry and previous works on debias-
ing. We report the results of P@K and R@K when K is 5 and 10, and the results of nDCG when K
is 50. More experimental results about different values of K can be found in the open source link.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:15

The candidate items to be recommended for a user are from the set of items that have not been
interacted by the user.

5.1.3 Baselines. Since most debiasing methods are integrated into some existing recommen-
dation models, in order to evaluate the generalization of our method, we adopt two of the most
common recommendation models as the backbones, i.e., matrix factorization (MF) [19] and neu-

ral collaborative filtering (NCF) [16]. In addition, among the four lines of debiasing methods
summarized in Section 2.1, the heuristic-based methods are usually inefficient, and the unbiased
data augmentation methods are not suitable for the scenario where only a biased data is avail-
able for training in this article. Therefore, we choose the representative methods in the other two
lines as the baselines. Note that based on different backbones, each of these baselines has two
corresponding versions.

— MF [19]: This is one of the most classic recommendation models. The user-item interac-
tion matrix is factorized to learn the representation of the users and items, and their inner
products are used to predict the user preferences for the items.

— NCF [16]: This is one of the most classic recommendation models combined with neural
networks. Compared with the linearity of matrix factorization, neural networks are used to
model the nonlinear relationship between users and items to further improve the recommen-
dation performance.

— IPS [35]: This is a representative method based on the inverse propensity score (IPS) in
debiasing recommendation. The estimated propensity score is used as the weight of the train-
ing feedback to adjust the biased distribution of the feedback. We estimate the propensity
score of item i for any user via the relative item popularity,

P∗,i =

(∑
u ∈U Ou,i

maxi ∈I
∑

u ∈U Ou,i

)η

, (21)

where Ou,i indicates the observation status of user u for item i , i.e., Ou,i = 1 means that
the user u observes the item i , while Ou,i = 0 is the opposite, and η is a control weight
used to adapt to different datasets. Similar methods have also been adopted in previous
works [21, 34].

— SNIPS [38]: The above method based on the inverse propensity score may face the problem
of high variance in practice. To solve this problem, a self-normalized inverse propensity
score is proposed and can be written as

LS N I PS =

∑
(u,i):Ou,i=1

L(Ŷu,i ,Yu,i)
Pu,i∑

(u,i):Ou,i=1
1

Pu,i

, (22)

where Pu,i is calculated according to Equation (21), and L (Ŷu,i ,Yu,i) is the cross-entropy

loss of the observed feedback. Yu,i and Ŷu,i are the true and predicted label of user u for
item i , respectively.

— AT [33]: For the selection bias in recommender systems, an upper bound of the generaliza-
tion error is derived and optimized by an asymmetric tri-training method. Two pre-models
are used to generate a pseudo-label set, and the target model and the two pre-models are
then retrained on this set. This process is repeated until the debiasing performance of the
target model is improved the most.

— Relevance [34]: Based on the idea of positive unlabeled learning, an unbiased estimation
is derived for binary feedback modeling in recommender systems. The inverse propensity
score is estimated and weighted differently for positive feedback and negative feedback.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:16 D. Liu et al.

Table 2. Hyper-Parameters and their Values Tuned in the

Experiments

Name Range Functionality

rank {5, 10, . . . , 195, 200} Embedding dimension
β {1e−5, 1e−4, . . . , 1e−1, 1} Regularization
bs {27, 28, . . . , 213, 214} Batch size
lr {1e−4, 5e−4, . . . , 5e−2, 1e−1} Learning rate
γ [0.001, 0.2] Loss weight
α [0.0001,min{γ }] Loss weight

The objective function can be represented as follows:

L̂Rel =
1

|D|
∑

(u,i)∈D

[
Yu,i

Pu,i
δ (1)

u,i +

(
1 −

Yu,i

Pu,i

)
δ (0)

u,i

]
, (23)

where δ (1)
u,i and δ (0)

u,i denote the positive loss and the negative loss, respectively, and Pu,i is

calculated by Equation (21).
— CVIB [47]: It is an alternative framework for debiasing learning without an unbiased

feedback data, which is called the information-theoretic counterfactual variational infor-
mation bottleneck. By separating the task-aware mutual information term in standard
information bottleneck into a factual part and a counterfactual part, it derives a contrastive
information regularizer and an additional output confidence penalty to improve the learning
balance between the observed and unobserved data.

5.1.4 Implementation Details. We implement all the methods on TensorFlow 1.41 with the
Adam optimizer. By evaluating the performance on AUC on the validation set, we use the hyper-
parameter search library Optuna [4] to accelerate the tuning process of all the methods. We also
adopt an early stopping mechanism with a patience of 5 to avoid overfitting to the training set. All
methods are run on a cluster with 2 Intel(R) Xeon(R) E5-2680 and 8 Tesla P100 GPU. The range of
the values of the hyper-parameters is shown in Table 2. Note that the source codes and results are
available at https://github.com/dgliu/TORS_DIB.

5.2 RQ1: Comparison Results of Unbiased Evaluation

The comparison results are reported in Tables 3 and 4. For the results of using matrix factorization
as the backbone model shown in Table 3, the proposed framework consistently outperforms all the
baselines on all the metrics across the two datasets of Yahoo! R3 and Product. In addition, we have
the following main observations: (1) The debiasing method is usually better than the basic base-
line, i.e., matrix factorization, except for IPS-MF on Yahoo! R3. This may be due to the inaccurate
estimation of the propensity score when the data size is small. (2) By avoiding the estimation of
the propensity score and providing theoretical completeness, theoretical tools-based methods (i.e.,
CVIB-MF, AT-MF, and Relevance-MF) usually achieve better and more stable performance. (3) For
the important baseline CVIB-MF whose objective function is also induced by information theory,
its improvement over MF on Yahoo! R3 is small, while the proposed framework is better and more
robust on both datasets.

For the results of using neural collaborative filtering as the backbone shown in Table 4, the pro-
posed framework outperforms all the baselines in most cases. Specifically, we have the following

1https://www.tensorflow.org.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

https://github.com/dgliu/TORS_DIB
https://www.tensorflow.org

Debiased Representation Learning in Recommendation via Information Bottleneck 5:17

Table 3. Comparison Results of Unbiased Evaluation using MF as the Backbone

Model, where the Best Results and the Second Best Results are Marked in Bold

and Underlined, Respectively

Yahoo! R3

Method AUC nDCG P@5 P@10 R@5 R@10

MF 0.7081 0.0341 0.0043 0.0043 0.0123 0.0273

IPS-MF 0.7040 0.0259 0.0031 0.0033 0.0091 0.0182
SNIPS-MF 0.7124 0.0390 0.0057 0.0048 0.0182 0.0293

CVIB-MF 0.7086 0.0488 0.0080 0.0075 0.0253 0.0471
AT-MF 0.7290 0.0676 0.0113 0.0101 0.0345 0.0629

Relevance-MF 0.7469 0.0843 0.0159 0.0131 0.0526 0.0863

DIB-MF 0.7602 0.0932 0.0177 0.0151 0.0566 0.0960

Product

Method AUC nDCG P@5 P@10 R@5 R@10

MF 0.6936 0.0324 0.0085 0.0079 0.0407 0.0752

IPS-MF 0.7125 0.0408 0.0095 0.0105 0.0456 0.1019
SNIPS-MF 0.7098 0.0403 0.0092 0.0104 0.0438 0.1003

CVIB-MF 0.7143 0.0521 0.0106 0.0109 0.0520 0.1076
AT-MF 0.7191 0.0443 0.0110 0.0113 0.0532 0.1092

Relevance-MF 0.6709 0.0656 0.0157 0.0142 0.0776 0.1386

DIB-MF 0.7365 0.0819 0.0198 0.0173 0.0965 0.1688

AUC is the main evaluation metric.

Table 4. Comparison Results of Unbiased Evaluation using NCF as the Backbone

Model, where the Best Results and the Second Best Results are Marked in Bold

and Underlined, Respectively

Yahoo! R3

Method AUC nDCG P@5 P@10 R@5 R@10

NCF 0.7251 0.0350 0.0037 0.0036 0.0097 0.0203

IPS-NCF 0.7221 0.0322 0.0032 0.0039 0.0085 0.0219
SNIPS-NCF 0.7230 0.0310 0.0030 0.0031 0.0087 0.0175

CVIB-NCF 0.7265 0.0347 0.0036 0.0030 0.0105 0.0177
AT-NCF 0.7139 0.0333 0.0031 0.0033 0.0084 0.0179

Relevance-NCF 0.6867 0.0507 0.0071 0.0064 0.0233 0.0408

DIB-NCF 0.7553 0.0686 0.0108 0.0101 0.0339 0.0630

Product

Method AUC nDCG P@5 P@10 R@5 R@10

NCF 0.7211 0.1465 0.0174 0.0136 0.0865 0.1343

IPS-NCF 0.7284 0.1463 0.0176 0.0135 0.0870 0.1330
SNIPS-NCF 0.7257 0.1454 0.0173 0.0135 0.0856 0.1323

CVIB-NCF 0.7291 0.1440 0.0149 0.0137 0.0732 0.1350
AT-NCF 0.6814 0.1464 0.0156 0.0139 0.0774 0.1375

Relevance-NCF 0.6653 0.1404 0.0156 0.0145 0.0763 0.1423

DIB-NCF 0.7345 0.1483 0.0175 0.0163 0.0865 0.1613

AUC is the main evaluation metric.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:18 D. Liu et al.

observations: (1) when K takes a relatively small value on Product, the proposed framework is
slightly worse than IPS-NCF on both precision and recall (i.e., P@5 and R@5). However, when
K takes a larger value, the proposed framework has obvious performance advantages (i.e., P@10
and R@10). This means that the proposed framework still has better overall performance. (2) Even
with the use of the techniques to reduce variance, the incorrect estimation of the propensity score
of a small dataset will be further exacerbated. (3) AT and Relevance may not be well adapted to
neural network–based models because they rely on some specific type of loss function rather than
the cross-entropy loss function.

5.3 RQ2: Ablation Studies

To understand the respective effects of the last three terms in Equation (15) on model training, we
conduct ablation studies on Yahoo! R3 and Product. The results are shown in Table 5. In the upper
half of the sub-tables w.r.t. the two different datasets in Table 5, we show the results using matrix
factorization as the backbone. For the results on Yahoo! R3, we can see that removing any term
will hurt the performance in most cases, and removing term (d) leads to the worst performance.
This may be due to the small size of Yahoo! R3, which causes the term (d) to play a more important
role in avoiding overfitting of the model to the training set. Conversely, we can find that removing
the term (d) on the larger Product dataset has less impact on most metrics except on AUC.

We present the results using neural collaborative filtering as the backbone model in the lower
half w.r.t. each dataset in Table 5. We note that removing the term (d) will bring the greatest
performance degradation on different data scales. One possible reason is that the neural network–
based model introduces more parameters, and these parameters need to be well learned under
the constraints of regularization terms. There are some unexpected cases in Table 5, i.e., when K
takes a small value, the full version of the proposed framework has a slight disadvantage on a few
metrics. This may be due to the noise caused by only considering AUC in parameter tuning. In
general, all terms in the proposed framework can synergistically produce the greatest gain.

5.4 RQ3: Analysis of Variants

In this section, we conduct a comparative analysis of DIB and its variant rDIB. As shown in
Table 6, we report the results of DIB and rDIB on Yahoo! R3 using matrix factorization and neural
collaborative filtering as the backbone models. We can observe that rDIB consistently outperforms
DIB on all metrics when matrix factorization is used as the backbone model. Considering neural
collaborative filtering as the backbone model, rDIB also outperforms DIB in most cases, except on
precision and recall when K takes small values. Overall, by relaxing the relationship between the
biased and unbiased components, rDIB can further improve the model’s recommendation perfor-
mance. One possible reason is that the additional shared part s between the biased component r
and the unbiased component z can accommodate the acceptability of the bias by different users.

5.5 RQ4: Model Analysis

In this section, we conduct some more in-depth analysis on the proposed framework to better
understand the properties of the proposed framework.

5.5.1 Visualization of the Biased Component r and the Unbiased Component z. A key question is
whether the biased component r and the unbiased component z in the proposed framework have a
pattern that meets the expectation, i.e., they gradually become independent in training. To answer
this question, at several training points, we use the t-SNE [41] method to visualize the biased and
unbiased components. The results are shown in Figure 5. We can see that as the training progresses,
there is a clear separation between the biased component in orange and the unbiased component

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:19

Table 5. Results of the Ablation Studies Using MF and NCF as the Backbone

Models, where the Best Results and the Second Best Results are Marked in

Bold and Underlined, Respectively

Yahoo! R3

Method AUC nDCG P@5 P@10 R@5 R@10

DIB-MF 0.7602 0.0932 0.0177 0.0151 0.0566 0.0960

w/o term (b) 0.7505 0.0893 0.0175 0.0138 0.0563 0.0909

w/o term (c) 0.7545 0.0915 0.0173 0.0142 0.0569 0.0937

w/o term (d) 0.7342 0.0769 0.0144 0.0117 0.0478 0.0737

DIB-NCF 0.7553 0.0686 0.0108 0.0101 0.0339 0.0630

w/o term (b) 0.7326 0.0553 0.0089 0.0081 0.0271 0.0489

w/o term (c) 0.7373 0.0592 0.0097 0.0093 0.0292 0.0585

w/o term (d) 0.7243 0.0597 0.0102 0.0099 0.0318 0.0603

Product

Method AUC nDCG P@5 P@10 R@5 R@10

DIB-MF 0.7365 0.0819 0.0198 0.0173 0.0965 0.1688

w/o term (b) 0.7173 0.0546 0.0126 0.0115 0.0614 0.1112

w/o term (c) 0.7156 0.0511 0.0109 0.0113 0.0527 0.1083

w/o term (d) 0.6809 0.0719 0.0178 0.0153 0.0867 0.1504

DIB-NCF 0.7345 0.1483 0.0175 0.0163 0.0865 0.1613

w/o term (b) 0.7274 0.1474 0.0181 0.0131 0.0901 0.1294

w/o term (c) 0.7276 0.1474 0.0181 0.0131 0.0901 0.1294

w/o term (d) 0.7133 0.1438 0.0177 0.0123 0.0876 0.1214

AUC is the main evaluation metric.

Table 6. Comparison Results of DIB and Its Variant rDIB using MF and NCF as the Backbone Models

on Yahoo! R3, where the Best Results are Marked in Bold

Method AUC nDCG P@5 P@10 P@50 R@5 R@10 R@50

DIB-MF 0.7602 0.0932 0.0177 0.0151 0.0083 0.0566 0.0960 0.2526

rDIB-MF 0.7611 0.0977 0.0180 0.0155 0.0084 0.0585 0.0998 0.2565

improvement 0.12% 4.83% 1.69% 2.65% 1.21% 3.36% 3.96% 1.54%

DIB-NCF 0.7553 0.0686 0.0108 0.0101 0.0068 0.0339 0.0630 0.2046

rDIB-NCF 0.7605 0.0706 0.0108 0.0103 0.0071 0.0336 0.0621 0.2149

improvement 0.69% 2.92% 0.00% 1.98% 4.41% −0.88% −1.43% 5.03%

in blue. This verifies the effectiveness of the proposed framework. We also note that the unbiased
component is looser than the biased component, and a small part of the unbiased component is
still mixed with the biased component. This may be because the unbiased component needs to
learn the personalized differences between the users, among whom there are still some users who
are difficult to be distinguished.

5.5.2 Visualization of the Loss of Each Term in LDI B . We next analyze the change trend of the
corresponding loss for each term in LDI B . The results are shown in Figure 6(a). Early in train-
ing (Epoch ≤ 80), the model is tuned from an initialization to a transition state, and then is
fine-tuned as the components are separated. A sufficient reduction in the loss of term (a) guar-
antees the basic performance of the proposed method (i.e., the performance corresponding to the

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:20 D. Liu et al.

Fig. 5. Dynamic visualization of the unbiased component z and the biased component r as training pro-

gresses, in which the orange and blue points are used to denote the biased component r and the unbiased

component z, respectively.

Fig. 6. (a) The change trend of the corresponding loss to each term of LDI B during the training progresses,

where the black dotted line indicates Epoch = 80. (b) During training, the AUC results of each method on

the validation set and the corresponding AUC results on the test set, where the black dotted line indicates

the result of DIB on the validation set at the 80th epoch.

unbiased component z). By comparing the trends of term (b) and term (c), we can see that using
the biased component r alone will lead to a very poor result, but as long as it is combined with
the unbiased component z, the best result can be achieved. This is reasonable, because the biased
component itself does not reflect a user’s preferences well, but the combination with the unbi-
ased component will lead to an over-approximation effect on the observed feedback. The above
training trends are in line with our analysis in Section 4.2.4 about the effectiveness of our DIB. In
addition, the trend of term (d) indicates that the compression term is helpful in learning a more
ideal unbiased component throughout the training process.

5.5.3 Performance Trends of All Methods on Validation Set and Test Set. In our situation, only
biased feedback is available in the training phase and the validation set with biased properties
and the test set with unbiased properties are different in distribution. Therefore, a good debiasing
method should avoid over-approximation to the validation set. We show the paired AUC results
on validation and test sets of all methods during training in Figure 6(b). We can find that DIB
achieves a better balanced result on the validation and test sets, especially after the biased and
unbiased components are clearly separated. This again verifies the effectiveness of our DIB for
debiasing through the introduced biased and unbiased components. Furthermore, it also matches
our analysis in Section 4.2.4 for why our DIB is effective.

5.5.4 Sources of Performance Gains in DIB. We further analyze the sources of performance
gains in DIB. First, all users (or items) are grouped according to their activity (or popularity). For

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:21

Fig. 7. (a) Differences on hit rate between DIB and the base model (i.e., MF) in different user groups, defined

by the number of users contained in each group. (b) Differences on hit rate between DIB and the base model

(i.e., MF) in different item groups according to the number of items contained in each group.

Table 7. In Different User Groups and Item Groups, the Coverage of Hit Rate of DIB and the Base Model,

where the Coverage Rate Refers to the Proportion of Users and Items with a Hit Rate Greater Than 0

User activity Item popularity

Method <=20 21–30 31–50 51–100 >100 <=400 400–800 800–2,000 >2,000

Base 0.1582 0.1818 0.1934 0.1986 0.0556 0.1341 0.1500 0.3810 0.8696

DIB 0.3508 0.3677 0.3950 0.4521 0.6667 0.1653 0.7700 0.9762 1.0000

each user (or item) group, we calculate the mean of the difference on hit rate between DIB and
the base model (i.e., MF). A user’s hit rate is the proportion of positive items in the test set that
are correctly recommended to that user, and an item’s hit rate is similarly defined. The results
are shown in Figure 7(a) and (b). We can observe that DIB achieves significant performance im-
provements across all user groups and most item groups, especially for users with high activity
and items with high popularity. Next, we count the coverage of the hit rate of DIB and the base
model in different user (or item) groups, where the coverage rate refers to the proportion of users
(or items) with a hit rate greater than 0. The results are shown in Table 7, and we can find that
DIB has a clear advantage in coverage across all groups. In particular, we notice that DIB also has
a coverage improvement in the first group of item popularity, and this means that in Figure 7(b),
DIB’s slight improvement in terms of the average hit rate for this group is due to the hit rate be-
ing amortized across more items. From the above results, we can find that our DIB can effectively
obtain the unbiased embeddings of the users and items, so that it can more accurately capture a
user’s true preferences on an item.

5.5.5 Analysis of Recommendation Distribution and Utility. Next, we analyze the recommen-
dation distribution and the corresponding utility of our DIB and other baselines. We first show
the recommendation distribution and utility on the randomized data in Yahoo! R3 in Figure 8(a),
where popular items are defined as the top 20% most frequent items in the dataset, and the rest are
the unpopular items. We can find that although the global recommendation distribution is almost
uniform, i.e., the probability of popular and unpopular items being shown is also 2:8, the utility of
popular items is significantly higher than that of unpopular items. This means that many users’
decision-making behaviors are still popularity driven. Therefore, blindly reducing one particular
bias, such as the popularity bias, can be counterproductive. We show the recommendation
distribution and utility of our DIB and other baselines in Figures 8(b) and (c). We can find that

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:22 D. Liu et al.

Fig. 8. On Yahoo! R3, recommendation distribution and utility of the randomized data (a), and recommen-

dation distribution and utility of different methods on its popular items (b) and unpopular items (c).

AT, Relevance, and our DIB, which perform better in unbiased tests, largely retain a user’s
popularity-oriented preferences instead of suppressing them blindly. In addition, the utility of all
methods on popular items is not significantly different. On the other hand, although AT, Relevance,
and our DIB show a smaller fraction of unpopular items, they have a clear utility boost, in particu-
lar of our DIB. This means that unpopular items are more susceptible to the offset on the feedback
label caused by the confounding bias, while our DIB can more accurately identify a user’s true
preferences on unpopular items, i.e., the confounding bias is more effectively mitigated.

5.5.6 Analysis of Item Embedding. Many of the above results have shown that our DIB can
obtain unbiased embeddings of the users and items to more accurately capture a user’s true pref-
erences on an item. Therefore, we take the obtained item embeddings as an example to further
analyze the difference between our DIB and other baselines. More specifically, inspired by previ-
ous works showing that the norms of parameters associated with different categories can reflect
the bias between them [5], we compute the norms of item embeddings obtained in each method
separately. Note that we have normalized the norms of all item embeddings within each method for
ease of comparison. The results are shown in Figure 9, and the x-axis has been arranged in ascend-
ing order. We can find that a traditional recommendation model (i.e., MF) focuses on extremely
popular items and is confused on other items, which are more susceptible to the confounding bias.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:23

Fig. 9. Visualization of the corresponding norms for the obtained item embedding representations.

Fig. 10. In the process of parameter search, the results of DIB with different values of parameters, including

(a) regularization weight β , (b) batch size bs , (c) learning rate lr , (d) embedding dimension rank , and (e) loss

weights γ and α .

IPS over-corrects the distribution, and SNIPS maintains the dominance of popular items by reduc-
ing the variance of estimates. Methods with better performance, i.e., AT, Relevance, and our DIB,
aim to promote a smoother curve, where most items have a similar norm and grow gently with the
popularity of the items. In particular, benefiting from the idea of debiased representation learning,
our DIB can obtain a trend with less fluctuation.

5.5.7 Sensitivity Analysis of Parameters. Finally, we analyze the results of DIB under parame-
ters with different values during parameter search. We first consider the regularization weight β ,
batch size bs , learning rate lr , and embedding dimension rank in Table 2 and report the results
in Figures 10(a), (b), (c), and (d), respectively. We can find that a smaller regularization weight, a
larger batch size, and a moderate learning rate are better choices. In addition, the impact of the

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

5:24 D. Liu et al.

Fig. 11. The results of A/B testing of the original baseline model and the baseline model integrated with DIB

in one cycle.

embedding dimension on DIB is milder. We then consider the two most important parameters in
DIB, i.e., the loss weights γ and α , and the results are shown in Figure 10(e). The y-axis and x-axis
represent the values of γ and γ − α , respectively. We can observe that the performance of DIB
depends on the relationship between γ and γ −α , where a better choice is for γ −α to take a small
value, i.e., constrain γ and α to have similar values.

5.6 RQ5: Results in Real-World Recommendation Scenarios

In this section, we describe the online results of deploying DIB in a real-world commercial recom-
mender system. The scenario is video recommendation in a news feed module on a commercial
browser. The adopted training data involves 120 million records of 20 million users in the system,
and a feature set with more than 100 fields is designed. We integrate DIB by taking a baseline
model deployed online in the system as the backbone model. This baseline model is based on the
main architecture of DCN-V2 [43] with some self-developed small modified modules. DCN-V2 is
one of the commonly used models for click-through rate prediction in industrial recommendations,
which contains a cross network and a deep network, and can learn the feature interactions effi-
ciently. We randomly select 2% of online users as subjects for A/B testing, of which 1% are divided
into the experimental group and the rest are divided into the control group. The control group
uses the existing baseline model, while the experimental group uses the baseline model with inte-
grated DIB. We show the results of A/B testing in one cycle in Figure 112 and can find that DIB
can consistently and effectively improve the performance of the deployed baseline model.

6 CONCLUSIONS AND FUTURE WORK

In this article, we describe the generation process of the biased and unbiased feedback in recom-
mender systems via two respective causal diagrams, and then define a set of system-induced biases
resulting from their differences as confounding bias. When only the biased feedback is available,
we analyze the conditions that need to be met to alleviate the confounding bias, and then propose
a new perspective on debiased representation learning to solve these conditions. Specifically, we
propose a DIB framework and its variant under relaxed conditions to perform this optimization
process based on the guidance of information theory. Moreover, we derive a tractable solution for
the proposed framework and its variant. We conduct extensive experiments on a public dataset

2Note that due to confidentiality requirements, we scale the actual metrics.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

Debiased Representation Learning in Recommendation via Information Bottleneck 5:25

and a real product dataset to verify the effectiveness of the proposed framework, including unbi-
ased evaluation, ablation studies, analysis of the variant, in-depth analysis of the model, and A/B
testing.

For future works, we plan to extend the proposed framework to scenarios where multiple biased
data are available, such as cross-domain recommendation and multi-task optimization. We are also
interested in how to extend the proposed framework with an additional small unbiased data, which
will further expand the applicability of the framework in debiasing recommendation. Finally, we
will also investigate other solutions for debiased representation learning.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their expert and constructive comments and suggestions.

REFERENCES

[1] Himan Abdollahpouri, Robin Burke, and Bamshad Mobasher. 2017. Controlling popularity bias in learning-to-rank

recommendation. In Proceedings of the 11th ACM Conference on Recommender Systems. 42–46.

[2] Alessandro Achille and Stefano Soatto. 2018. Information dropout: Learning optimal representations through noisy

computation. IEEE Transactions on Pattern Analysis and Machine Intelligence 40, 12 (2018), 2897–2905.

[3] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and Thorsten Joachims. 2019. Estimating posi-

tion bias without intrusive interventions. In Proceedings of the 12th ACM International Conference on Web Search and

Data Mining. 474–482.

[4] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation

hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-

edge Discovery & Data Mining. 2623–2631.

[5] Shaden Alshammari, Yu-Xiong Wang, Deva Ramanan, and Shu Kong. 2022. Long-tailed recognition via weight bal-

ancing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6897–6907.

[6] Stephen Bonner and Flavian Vasile. 2018. Causal embeddings for recommendation. In Proceedings of the 12th ACM

Conference on Recommender Systems. 104–112.

[7] Rocío Cañamares and Pablo Castells. 2018. Should I follow the crowd?: A probabilistic analysis of the effectiveness

of popularity in recommender systems. In Proceedings of the 41st International ACM SIGIR Conference on Research and

Development in Information Retrieval. 415–424.

[8] Pengyu Cheng, Martin Renqiang Min, Dinghan Shen, Christopher Malon, Yizhe Zhang, Yitong Li, and Lawrence Carin.

2020. Improving disentangled text representation learning with information-theoretic guidance. In Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics. 7530–7541.

[9] Bin Dai, Chen Zhu, Baining Guo, and David Wipf. 2018. Compressing neural networks using the variational informa-

tion bottleneck. In Proceedings of the 35th International Conference on International Conference on Machine Learning.

1135–1144.

[10] Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. 2020. Learning robust representations

via multi-view information bottleneck. In Proceedings of the 8th International Conference on Learning Representations.

[11] Ruoyuan Gao and Chirag Shah. 2020. Counteracting bias and increasing fairness in search and recommender systems.

In Proceedings of the 14th ACM Conference on Recommender Systems. 745–747.

[12] Yingqiang Ge, Shuya Zhao, Honglu Zhou, Changhua Pei, Fei Sun, Wenwu Ou, and Yongfeng Zhang. 2020. Under-

standing echo chambers in e-commerce recommender systems. In Proceedings of the 43rd International ACM SIGIR

Conference on Research and Development in Information Retrieval. 2261–2270.

[13] Yingqiang Ge, Xiaoting Zhao, Lucia Yu, Saurabh Paul, Diane Hu, Chu-Cheng Hsieh, and Yongfeng Zhang. 2022. To-

ward Pareto efficient fairness-utility trade-off in recommendation through reinforcement learning. In Proceedings of

the 15th ACM International Conference on Web Search and Data Mining. 316–324.

[14] Prem Gopalan, Jake M. Hofman, and David M. Blei. 2015. Scalable recommendation with hierarchical Poisson factor-

ization. In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence. 326–335.

[15] Negar Hassanpour and Russell Greiner. 2020. Learning disentangled representations for counterfactual regression. In

Proceedings of the 8th International Conference on Learning Representations.

[16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. 2017. Neural collaborative filtering.

In Proceedings of the 27th International Conference on World Wide Web. 173–182.

[17] Ayush Jaiswal, Rob Brekelmans, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed, and Premkumar Natarajan. 2019.

Discovery and separation of features for invariant representation learning. https://arxiv.org/abs/1912.00646.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

https://arxiv.org/abs/1912.00646

5:26 D. Liu et al.

[18] Ray Jiang, Silvia Chiappa, Tor Lattimore, András György, and Pushmeet Kohli. 2019. Degenerate feedback loops in

recommender systems. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. 383–390.

[19] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization techniques for recommender systems. Com-

puter 8 (2009), 30–37.

[20] Kun Kuang, Peng Cui, Bo Li, Meng Jiang, Shiqiang Yang, and Fei Wang. 2017. Treatment effect estimation with data-

driven variable decomposition. In Proceedings of the 31st AAAI Conference on Artificial Intelligence. 140–146.

[21] Dawen Liang, Laurent Charlin, and David M. Blei. 2016. Causal inference for recommendation. In Workshop on Cau-

sation: Foundation to Application Co-located with the 32nd Conference on Uncertainty in Artificial Intelligence.

[22] Dawen Liang, Laurent Charlin, James McInerney, and David M. Blei. 2016. Modeling user exposure in recommenda-

tion. In Proceedings of the 25th International Conference on World Wide Web. 951–961.

[23] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018. Variational autoencoders for collabo-

rative filtering. In Proceedings of the 27th International Conference on World Wide Web. 689–698.

[24] Chen Lin, Dugang Liu, Yanghua Xiao, and Hanghang Tong. 2020. Spiral of silence and its application in recommender

systems. IEEE Transactions on Knowledge and Data Engineering 34, 6 (2020), 2934–2947.

[25] Dugang Liu, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Weike Pan, and Zhong Ming. 2020. A general knowledge

distillation framework for counterfactual recommendation via uniform data. In Proceedings of the 43rd International

ACM SIGIR Conference on Research and Development in Information Retrieval. 831–840.

[26] Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike Pan, and Zhong Ming. 2021. Mitigat-

ing confounding bias in recommendation via information bottleneck. In Proceedings of the 15th ACM Conference on

Recommender Systems. 351–360.

[27] Dugang Liu, Chen Lin, Zhilin Zhang, Yanghua Xiao, and Hanghang Tong. 2019. Spiral of silence in recommender

systems. In Proceedings of the 12th ACM International Conference on Web Search and Data Mining. 222–230.

[28] Benjamin M. Marlin and Richard S. Zemel. 2009. Collaborative prediction and ranking with non-random missing data.

In Proceedings of the 3rd ACM Conference on Recommender Systems. 5–12.

[29] Daniel Moyer, Shuyang Gao, Rob Brekelmans, Greg Ver Steeg, and Aram Galstyan. 2018. Invariant representations

without adversarial training. In Proceedings of the 32nd International Conference on Neural Information Processing

Systems. 9102–9111.

[30] Zohreh Ovaisi, Ragib Ahsan, Yifan Zhang, Kathryn Vasilaky, and Elena Zheleva. 2020. Correcting for selection bias

in learning-to-rank systems. In Proceedings of the 29th International Conference on World Wide Web. 1863–1873.

[31] Sonali Parbhoo, Mario Wieser, and Volker Roth. 2018. Causal deep information bottleneck. https://arxiv.org/abs/1807.

02326v1.

[32] Paul R. Rosenbaum and Donald B. Rubin. 1983. The central role of the propensity score in observational studies for

causal effects. Biometrika 70, 1 (1983), 41–55.

[33] Yuta Saito. 2020. Asymmetric tri-training for debiasing missing-not-at-random explicit feedback. In Proceedings of the

43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 309–318.

[34] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata. 2020. Unbiased recommender learn-

ing from missing-not-at-random implicit feedback. In Proceedings of the 13th ACM International Conference on Web

Search and Data Mining. 501–509.

[35] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and Thorsten Joachims. 2016. Recommenda-

tions as treatments: Debiasing learning and evaluation. In Proceedings of the 33rd International Conference on Machine

Learning. 1670–1679.

[36] Zihua Si, Xueran Han, Xiao Zhang, Jun Xu, Yue Yin, Yang Song, and Ji-Rong Wen. 2022. A model-agnostic causal

learning framework for recommendation using search data. In Proceedings of the 31st International Conference on

World Wide Web.

[37] Yixin Su, Rui Zhang, Sarah Erfani, and Zhenghua Xu. 2021. Detecting beneficial feature interactions for recommender

systems. In Proceedings of the 35th AAAI Conference on Artificial Intelligence. 4357–4365.

[38] Adith Swaminathan and Thorsten Joachims. 2015. The self-normalized estimator for counterfactual learning. In Pro-

ceedings of the 29th International Conference on Neural Information Processing Systems. 3231–3239.

[39] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory. Wiley-Interscience.

[40] Naftali Tishby, Fernando C Pereira, and William Bialek. 1999. The information bottleneck method. In Proceedings of

the 37th Annual Allerton Conference on Communications, Control and Computing. 368–377.

[41] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of Machine Learning Re-

search 9, 11 (2008), 2579–2605.

[42] Qi Wan Wan, Xiangnan He, Xiang Wang, Jiancan Wu, Wei Guo, and Ruiming Tang. 2022. Cross pairwise ranking for

unbiased item recommendation. In Proceedings of the 31st International Conference on World Wide Web.

[43] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and Ed Chi. 2021. DCN V2: Im-

proved deep and cross network and practical lessons for web-scale learning to rank systems. In Proceedings of the

30th International Conference on World Wide Web. 1785–1797.

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

https://arxiv.org/abs/1807.02326v1

Debiased Representation Learning in Recommendation via Information Bottleneck 5:27

[44] Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. 2021. Clicks can be cheating: Counter-

factual recommendation for mitigating clickbait issue. In Proceedings of the 44th International ACM SIGIR Conference

on Research and Development in Information Retrieval. 1288–1297.

[45] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc Najork. 2018. Position bias estimation

for unbiased learning to rank in personal search. In Proceedings of the 11th ACM International Conference on Web Search

and Data Mining. 610–618.

[46] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2021. Combating selection biases in recommender systems with a

few unbiased ratings. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining. 427–435.

[47] Zifeng Wang, Xi Chen, Rui Wen, Shao-Lun Huang, Ercan E. Kuruoglu, and Yefeng Zheng. 2020. Information theoretic

counterfactual learning from missing-not-at-random feedback. In Advances in Neural Information Processing Systems.

1854–1864.

[48] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan He. 2021. Model-agnostic counterfactual

reasoning for eliminating popularity bias in recommender system. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining. 1791–1800.

[49] Teng Xiao and Suhang Wang. 2022. Towards unbiased and robust causal ranking for recommender systems. In Pro-

ceedings of the 15th ACM International Conference on Web Search and Data Mining. 1158–1167.

[50] Shuyuan Xu, Yingqiang Ge, Yunqi Li, Zuohui Fu, Xu Chen, and Yongfeng Zhang. 2021. Causal collaborative filtering.

https://arxiv.org/abs/2102.01868.

[51] Haiqin Yang, Guang Ling, Yuxin Su, Michael R. Lyu, and Irwin King. 2015. Boosting response aware model-based

collaborative filtering. IEEE Transactions on Knowledge and Data Engineering 27, 8 (2015), 2064–2077.

[52] Jiangxing Yu, Hong Zhu, Chih-Yao Chang, Xinhua Feng, Bowen Yuan, Xiuqiang He, and Zhenhua Dong. 2020. Influ-

ence function for unbiased recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research

and Development in Information Retrieval. 1929–1932.

[53] Bowen Yuan, Jui-Yang Hsia, Meng-Yuan Yang, Hong Zhu, Chih-Yao Chang, Zhenhua Dong, and Chih-Jen Lin. 2019.

Improving ad click prediction by considering non-displayed events. In Proceedings of the 28th ACM International

Conference on Information and Knowledge Management. 329–338.

[54] Shuxi Zeng, Murat Ali Bayir, Joel Pfeiffer, Denis Charles, and Emre Kiciman. 2021. Causal transfer random forest: Com-

bining logged data and randomized experiments for robust prediction. In Proceedings of the 14th ACM International

Conference on Web Search and Data Mining. 211–219.

[55] Ziwei Zhu and James Caverlee. 2022. Fighting mainstream bias in recommender systems via local fine tuning. In

Proceedings of the 15th ACM International Conference on Web Search and Data Mining. 1497–1506.

Received 31 March 2022; revised 10 August 2022; accepted 25 September 2022

ACM Transactions on Recommender Systems, Vol. 1, No. 1, Article 5. Publication date: January 2023.

https://arxiv.org/abs/2102.01868

