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ABSTRACT
Recommender systems are feedback loop systems, which often face

bias problems such as popularity bias, previous model bias and po-

sition bias. In this paper, we focus on solving the bias problems in a

recommender system via a uniform data. Through empirical studies

in online and offline settings, we observe that simple modeling with

a uniform data can alleviate the bias problems and improve the per-

formance. However, the uniform data is always few and expensive

to collect in a real product. In order to use the valuable uniform data

more effectively, we propose a general knowledge distillation frame-

work for counterfactual recommendation that enables uniform data

modeling through four approaches: (1) label-based distillation fo-

cuses on using the imputed labels as a carrier to provide useful

de-biasing guidance; (2) feature-based distillation aims to filter out

the representative causal and stable features; (3) sample-based distil-

lation considers mutual learning and alignment of the information

of the uniform and non-uniform data; and (4) model structure-

based distillation constrains the training of the models from the

perspective of embedded representation. We conduct extensive ex-

periments on both public and product datasets, demonstrating that

the proposed four methods achieve better performance over the

baseline models in terms of AUC and NLL. Moreover, we discuss

the relation between the proposed methods and the previous works.

We emphasize that counterfactual modeling with uniform data is a

rich research area, and list some interesting and promising research

topics worthy of further exploration. Note that the source codes

are available at https://github.com/dgliu/SIGIR20_KDCRec.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
Recommender Systems as a feedback loop system may suffer from

the bias problems such as popularity bias [1, 6], previous model

bias [9, 16, 17] and position bias [3, 28]. Previous studies have

shown that models and evaluation metrics that ignore the biases

do not reflect the true performance of a recommender system, and

that explicitly handling of the biases may help improve the perfor-

mance [16, 28, 31]. Most of the previous works to solve the bias

problems of recommender systems can be classified as counter-

factual learning-based [25] and heuristic-based approaches. The

former mainly uses the inverse propensity score (IPS) [24] and

the counterfactual risk minimization (CRM) principle [25], while

the latter mainly makes certain assumptions about the data being

missing not at random (MNAR) [15, 17].

A recent work has shown that a uniform data can alleviate the

previous model bias problem [16]. But the uniform data is always

few and expensive to collect in real recommender systems. To col-

lect a uniform data, we must intervene in the system by using a

uniform logging policy instead of a stochastic recommendation

policy, this is, for each user’s request, we do not use the recom-

mendation model for item delivery, but instead randomly select

some items from all the candidate items and rank them with a

uniform distribution. The uniform data can then be regarded as

a good unbiased agent because it is not affected by a previously

deployed recommendation model. However, the uniform logging

policy would hurt the users’ experiences and the revenue of the

platform. This means that it is necessary to constrain the uniform

data collection within a particularly small traffic (e.g., 1%).

In this paper, we focus on how to solve the bias problems in a

recommender system with a uniform data. Along the line of [16],

we conduct empirical studies on a real advertising system and a
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public dataset to validate the usefulness of the uniform data, where

the uniform data is simply combined with the non-uniform data

for training models. We observe that such a simple method can

alleviate the bias and improve the performance, which motivates

us to study more advanced methods that can make better use of

the uniform data. Although there are many ways to extract infor-

mation or knowledge from a uniform data, in this paper we focus

on knowledge distillation because of its simplicity and flexibility.

To use the few and valuable uniform data more effectively, we

propose a general knowledge distillation framework for counter-

factual recommendation (KDCRec), which enables uniform data

modeling with four approaches, i.e., label-based distillation, feature-

based distillation, sample-based distillation and model structure-

based distillation. Each one is based on a different concern, i.e.,

label-based distillation focuses on using the imputed labels as a

carrier to provide useful de-biasing guidance; feature-based dis-

tillation aims to filter out the representative unbiased features;

sample-based distillation considers mutual learning and alignment

of the information of the uniform and non-uniform data; and model

structure-based distillation constrains the training of the models

from the perspective of embedded representation.

The main contributions of this paper are summarized as follows:

• We show empirical evidence that a uniform data is useful

for preference modeling via an online A/B test and an offline

evaluation, which justifies the importance of our research

questions.

• We propose a general knowledge distillation framework KD-

CRec for counterfactual recommendation via a uniform data,

including label-based distillation, feature-based distillation,

sample-based distillation and model structure-based distilla-

tion.

• We conduct extensive experiments on both public and prod-

uct datasets, demonstrating that the four proposed methods

achieve better performance over the baselinemodels in terms

of AUC and NLL.

• We discuss the relation between the proposed methods and

the previous works, and list some interesting and promising

research directions for further exploration.

2 RELATEDWORK
Since we study how to apply knowledge distillation techniques

for counterfactual recommendation, we first review some related

works on general knowledge distillation. We also include some

counterfactual learning methods for recommendation and ranking.

2.1 Knowledge Distillation
Hinton’s work first proposes the concept of knowledge distilla-

tion [10]. By introducing soft-targets related to teacher networks

as part of the objective function, the training of student networks

is guided to achieve knowledge transfer [18]. A series of follow-

up works develop different distillation structures (e.g., multiple

teachers [8] and cascade distillations [4]) and different forms of

knowledge (e.g., alignment of the hidden layers [22] or the relation

between the hidden layers [32]). Some recent works are no longer

limited to model structure, but considers sample-based knowledge

distillation [21, 27]. In this paper, we further expand the definition

of distillation to include label-based and feature-based forms. The

marriage of knowledge distillation and recommender systems has

also attracted the attention of the researchers [26, 30, 34]. Most

of these works focus on using knowledge distillation to extract

some useful knowledge from some auxiliary models to enhance

the performance or interpretability of the target recommendation

model. In this paper, we focus on using knowledge distillation to

solve the bias problems in recommender systems.

2.2 Counterfactual Learning for Ranking
For learning-to-rank tasks, Agarwal et al. [2] provides a general and

theoretically rigorous framework with two counterfactual learning

methods, i.e., SVM PropDCG and DeepPropDCG. Some position

bias estimation methods for ranking are proposed in [3, 28]. IPS

is one of the most popular counterfactual approaches for recom-

mendation [24, 31], where each sample is weighted with an IPS,

referring to the likelihood of the sample being logged. If there are no

unobserved confounders, IPS methods can get an unbiased predic-

tion model in theory. A direct method tries to learn an imputation

model, which can infer the labels for both the observed and unob-

served samples. The imputation model can be learned by machine

learning models [7, 14] with the observed data. A doubly robust

method [7] combines the IPS method and the aforementioned di-

rect method together, and the bias can be eliminated if either the

direct method part or the IPS method part is unbiased. Wang et

al. [29] proposes a doubly robust method for joint learning of rat-

ing prediction and error imputation. Moreover, a uniform data is

useful for counterfactual learning, such as imputation model learn-

ing [33], propensity computation [24] and modeling with uniform

data directly [5, 11, 16, 23]. In this paper, we would like to study

methods for better use of the uniform data from the perspective of

knowledge distillation.

3 MOTIVATION
In a recent work [16], it is shown that a uniform (i.e., unbiased) data

can alleviate the previous model bias problem. In this section, to

further verify the usefulness of a uniform data, we firstly compare

the online performance of two models in a real advertising system,

where one model is trained with a biased data, and the other is

trainedwith both a uniform data and a biased data. Next, we conduct

some pilot experiments to quantify the effectiveness of an unbiased

data using a public dataset.

3.1 Model Performance on a Product Dataset
We conduct an online A/B test on a large-scale advertising system.

In the system, there is 1% traffic for "uniform data collection": for

these requests, we randomly collect some advertisements from

all candidates, and rank them with uniform distribution. The 1%

training data is isolated from being influenced by the previously

deployed recommendationmodels, which is thus called 1%-unbiased
data, the other 99% non-uniform traffic is named 99%-biased data,
and all the 100% traffic is named 100%-combined data. Because
logistic regression (LR) is one of the most popular models for CTR

prediction, we implement two LR models with the 99%-biased data
and the 100%-combined data, respectively. Next, we deploy the two

models in the advertising system.
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Experimental Setting. In our preliminary experiments, we col-

lect training data from an online display advertising system for

30 days, and generate three kinds of data sets: 1%-unbiased data,
99%-biased data and 100%-combined data. We verify the two models’

effectiveness through an online A/B test for 30 consecutive days.

The ads requests have been split into two groups, each of which

contains more than two million ads requests each day. One request

group receives recommendations from one of the two models. The

candidates ads are ranked by𝑏𝑖𝑑 ∗𝑝𝐶𝑇𝑅, where the advertiser offers
the bid, and our models compute the 𝑝𝐶𝑇𝑅 values. We thus use the

effective cost per mille (eCPM) as the online performance:

𝑒𝐶𝑃𝑀 =
𝑇𝑜𝑡𝑎𝑙 𝐴𝑑𝑠 𝐼𝑛𝑐𝑜𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝐴𝑑𝑠 𝐼𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠
× 1000. (1)

For the offline experiment, we split the 30-day data sequentially,

where the first 28 days for training, the last 2 days for validation

and test. Following most CTR prediction studies, we consider the

area under the roc curve (AUC) as the offline evaluation metric.

Experiment Results. The experimental results are shown in

Table 1, from which we can see that the 100%-combined data model

wins the other model by 1.56% (from 0.7571 to 0.7689) in terms

of AUC. Although the income degrades when collecting the 1%

randomized training data, the improvement from the uniform data

is 2.98%, which is much higher than the loss. We also train a model

with the 1%-unbiased data, but the simulated ads ranking lists do

not look well, which is thus not deployed by the product team.

Table 1: Performance comparisons on a product dataset.

Data approach Offline AUC Online eCPM
99%-biased data 0.7571 0.0%

100%-combined data 0.7689 2.98% (improvement)

3.2 Model Performance on a Public Dataset
We conduct some pilot experiments on the Yahoo! R3 dataset to

validate the usefulness of the unbiased data. Yahoo! R3 contains

some user-song ratings, where users were asked to rate a uniformly

drawn sample of songs. After processing of the data, we split the

public dataset into three training subsets, one validation set and one

test set, i.e., uniform data, biased data, uniform data ∪ biased data,
uniform validation data and uniform test data. We implement three

matrix factorization (MF) models with the three training subsets,

respectively, and adopt AUC and the negative logarithmic loss (NLL)

as the evaluation metrics. It is worth mentioning that we choose

the uniform test data as the test set to ensure the unbiasedness of

the experiment.

We observe a forward effect about the performance of the uni-
form data. As shown in Table 2, the uniform data model has the

best NLL score, but its AUC score is not competitive. The model

trained with the combination of the uniform data and the biased
data performs better than the model trained only with the biased
data, which means that the uniform data can help to improve the

accuracy.

Through the experiments with the product dataset and the public

dataset, we find that the uniform data can improve the recommen-

dation performance by simply being combined with the biased data,

which inspires us to study some more advanced methods.

Table 2: Performance comparisons on a public dataset.

Data approach AUC NLL
uniform data 0.5692 -0.50994

biased data 0.7275 -0.58905

uniform data ∪ biased data 0.7295 -0.58138

4 THE PROPOSED FRAMEWORK
In order to effectively make use of the uniform data, we propose

a general Knowledge Distillation framework for Counterfactual
Recommendation in this section,KDCRec for short. Figure 1 shows
the overview of the framework of our KDCRec. In our framework,

the uniform data can be modeled with four different methods, in-

cluding label-based distillation, feature-based distillation, sample-

based distillation, and model structure-based distillation. Note that

we use a general definition of distillation in the study rather than

the past knowledge distillation approaches such as considering the

level of sample [21, 27] and model structure [10, 22]. Each method

is based on different concerns to mine the potentially useful knowl-

edge from the uniform data, which will be used to improve the

learning of the biased data. Next, we will introduce the four meth-

ods in turn as different modules. More specifically, in each module,

we will give a formal definition of the corresponding method, and

list some practical solutions under the guidance of the definition.

Figure 1: Overview of the KDCRec framework. The scale of
the biased set 𝑆𝑐 is much larger than that of the unbiased set
𝑆𝑡 . Since the unobserved data is only used in some modules,
we distinguish it from 𝑆𝑐 and 𝑆𝑡 using a different color.

4.1 Label-Based Module
Models trained on a non-uniform data 𝑆𝑐 tend to produce biased

predictions, while predictions from a uniform data 𝑆𝑡 are more

unbiased. An intuitive idea is that when training a model on 𝑆𝑐 ,

the model receives the imputed labels produced by 𝑆𝑡 to correct

the bias of its own predictions. Based on this idea, we develop the

following formal definition of label-based distillation. Note that on

the premise of using the imputed labels, we can also include the

labels of 𝑆𝑡 . We emphasize the use of the imputed labels to avoid

confusion with other distillation methods.

Definition 1 (D1). A method can be classified as label-based
distillation if and only if the training of a non-uniform data 𝑆𝑐 can
benefit from the imputed labels produced by a uniform data 𝑆𝑡 .
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Solutions. Next, we use the two strategies adopted in our ex-

periments as examples to illustrate how label-based distillation can

be realized.

• Bridge Strategy. Let D denote the whole set of data, including

the non-uniform data 𝑆𝑐 , the uniform data 𝑆𝑡 and the unobserved

data. We first consider a scenario where two models are trained

simultaneously, i.e., train the model𝑀𝑐 and𝑀𝑡 in a supervised

manner on 𝑆𝑐 and 𝑆𝑡 , respectively. To correct the bias of 𝑀𝑐 , we

randomly sample an auxiliary set 𝑆𝑎 from D as a bridge in each

iterative training, and expect the predicted output of 𝑀𝑐 and

𝑀𝑡 on 𝑆𝑎 to be close. Note that most of the samples in 𝑆𝑎 are

unobserved data because of the data sparsity in recommender

systems. Due to the unbiased nature of 𝑆𝑡 and 𝑆𝑎 , this strategy

can reduce the bias of 𝑀𝑐 . The final objective function of this

strategy is,

min

W𝑐 ,W𝑡

1

|𝑆𝑐 |
∑

(𝑖, 𝑗) ∈𝑆𝑐
ℓ

(
𝑦𝑖 𝑗 , 𝑦

𝑐
𝑖 𝑗

)
+ 1

|𝑆𝑡 |
∑

(𝑖, 𝑗) ∈𝑆𝑡
ℓ

(
𝑦𝑖 𝑗 , 𝑦

𝑡
𝑖 𝑗

)
+

1

|𝑆𝑎 |
∑

(𝑖, 𝑗) ∈𝑆𝑎
ℓ

(
𝑦𝑐𝑖 𝑗 , 𝑦

𝑡
𝑖 𝑗

)
+ 𝜆𝑐𝑅 (W𝑐 ) + 𝜆𝑡𝑅 (W𝑡 ) ,

(2)

where W𝑐 and W𝑡 denote the parameters of𝑀𝑐 and𝑀𝑡 , respec-

tively, and ℓ (·, ·) is an arbitrary loss function. And 𝑦𝑖 𝑗 , 𝑦
𝑐
𝑖 𝑗
and

𝑦𝑡
𝑖 𝑗
denote the true label, and the predicted labels of 𝑀𝑐 and𝑀𝑡

for the sample (𝑖, 𝑗), respectively, where (𝑖, 𝑗) is associated with

user 𝑖 and item 𝑗 . Note that 𝑅 (·) is the regularization term, and

𝜆𝑐 and 𝜆𝑡 are the parameters of the regularization.

• Refine Strategy. We next consider a scenario where only one

model𝑀𝑐 is trained. The bias of 𝑆𝑐 may be reflected in the labels,

resulting in models trained on these labels being biased. For ex-

ample, when generating samples for modeling, all the observed

positive feedback are usually labeled as 1, and all the observed

negative feedback are labeled as -1. But in fact, they should fit a

preference distribution. With 𝑆𝑡 , we expect to be able to better

infer the true distribution of the labels on 𝑆𝑐 and then refine them.

Suppose we have obtained a model 𝑀𝑡 pre-trained on 𝑆𝑡 , and

then use it to predict all the samples on 𝑆𝑐 . These imputed labels

are combined with the original labels of 𝑆𝑐 through a weight-

ing parameter, which are then used to train a more unbiased

model𝑀𝑐 . Note that in order to avoid the distribution difference

between the imputed labels and the original labels, we need to

normalize the imputed labels. The final objective function of this

strategy is,

min

W𝑐

1

|𝑆𝑐 |
∑

(𝑖, 𝑗) ∈𝑆𝑐
ℓ

(
𝑦𝑖 𝑗 + 𝛼𝑁

(
𝑦𝑡𝑖 𝑗

)
, 𝑦𝑐𝑖 𝑗

)
+ 𝜆𝑐𝑅 (W𝑐 ) , (3)

where𝛼 is a tunable parameter that controls the importance of the

imputed labels produced by𝑀𝑡 , and𝑁 (·) denotes a normalization

function.

4.2 Feature-Based Module
Previous studies find that some features correlate with labels, but

the correlation is not a causal relation. For example, from 1999 to

2009, the correlation between "the number of people who drowned

by falling into a pool" and "the number of films Nicolas Cage ap-

peared in" is 66.6%. But as we know, if Nicolas Cage does not appear

in any film in a year, the number of people who drown in a pool

may still not be 0. Hence, we need to learn some causal and stable

features. The feature-based module can be divided into two steps,

i.e., stable feature selection and biased data correction. Firstly, we

filter out causal and stable features via a uniform data through some

methods. Then, we need to employ the stable features to train a

teacher model that can be used to guide the biased model. Thus, we

develop the following formal definition of feature-based distillation.

Definition 2 (D2). A method can be classified as feature-based
distillation if and only if the training of a non-uniform data 𝑆𝑐 can
benefit from the representative causal and stable features produced
by a uniform data 𝑆𝑡 .

Solutions. We employ stable feature strategy as an example to

reveal how feature-based distillation can be realized.

• Stable Feature Strategy. We propose a stable feature distilla-

tion module to filter out the causal features for correcting the

bias from 𝑆𝑐 . Figure 2 illustrates the main idea of stable feature

distillation, which consists of a deep global balancing regression

(DGBR) algorithm [13], a teacher network and a student network.

The DGBR algorithm optimizes a deep autoencoder model for

feature selection and a global balancing model for learning the

global sample weights and the predicting stability. The main idea

of feature-based distillation is to filter out the representative sta-

ble features through DGBR from 𝑆𝑡 , which are then used to train

a teacher network. Next, we train a student network to mimic

the output of the teacher model.

Figure 2: Illustration of stable feature distillation.

4.3 Sample-Based Module
In a real recommender system with a stochastic logging policy,

the probability of an item being recommended is different, and the

probability of a user making a choice is also different. This means

that model𝑀𝑐 may treat some items and users unfairly, because the

samples in 𝑆𝑐 lack support for these items and users. This unfairness

can be corrected to some extent by directly considering the samples

in 𝑆𝑡 during the training process of 𝑀𝑐 , as empirically shown in

Section 3. Because the uniform logging policy corresponding to 𝑆𝑡
increases the probability of the less popular items being selected,

and 𝑀𝑐 needs to weigh this difference between 𝑆𝑐 and 𝑆𝑡 . Based

on this idea, we develop the following formal definition of sample-

based distillation,
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Definition 3 (D3). A method can be classified as sample-based
distillation if and only if a uniform data 𝑆𝑡 is directly applied to
help learning on all the samples without generating some imputed
labels.

Solutions. Next, we use the three strategies adopted in our

experiments as examples to illustrate how sample-based distillation

can be realized.

• Causal Embedding Strategy (CausE). The causal embedding

method [5] first considers the scenario of training 𝑀𝑐 and 𝑀𝑡

simultaneously. It designs an additional alignment term to ex-

plicitly represent the learning of𝑀𝑐 for𝑀𝑡 . Causal embedding

defines this alignment term as the pairwise difference between

the parameters of𝑀𝑐 and𝑀𝑡 , which is then included in the object

function to be minimized. When the value of the alignment term

becomes small, it means that 𝑀𝑐 learns the causal information

contained in 𝑆𝑡 , which helps correct the bias in learning on 𝑆𝑐 .

Note that it is difficult to dynamically optimize the differences

between all the parameters of the two neural networks, so we

only use two low-rank models to implement this strategy in our

experiments. The final objective function is,

min

W𝑐 ,W𝑡

1

|𝑆𝑐 |
∑

(𝑖, 𝑗) ∈𝑆𝑐
ℓ

(
𝑦𝑖 𝑗 , 𝑦

𝑐
𝑖 𝑗

)
+ 1

|𝑆𝑡 |
∑

(𝑖, 𝑗) ∈𝑆𝑡
ℓ

(
𝑦𝑖 𝑗 , 𝑦

𝑡
𝑖 𝑗

)
+

𝜆𝑐𝑅 (W𝑐 ) + 𝜆𝑡𝑅 (W𝑡 ) + 𝜆𝐶𝑎𝑢𝑠𝐸𝑡𝑐 ∥W𝑡 −W𝑐 ∥2𝐹 ,
(4)

where 𝜆𝐶𝑎𝑢𝑠𝐸𝑡𝑐 is the regularization parameter for the alignment

term of𝑀𝑐 and𝑀𝑡 .

• Weighted Combination Strategy (WeightC). How to effec-

tively introduce the samples from 𝑆𝑡 to help 𝑀𝑐? Inspired by

modeling of heterogeneous implicit feedback [20], we add a con-

fidence parameter to each sample of 𝑆𝑐 and 𝑆𝑡 to indicate whether

it is unbiased. Naturally, the confidence of the samples in 𝑆𝑡 is

set to 1, and the confidence of the samples in 𝑆𝑐 has two schemes

to be used. The first scheme is a global setting, i.e., we set a con-

fidence value in advance for all the samples of 𝑆𝑐 . The second

scheme is a local setting, i.e., each sample of 𝑆𝑐 has a confidence

value that needs to be learned by 𝑀𝑐 . The confidence of each

sample is related to the corresponding loss function. The final

objective function of this strategy is,

min

W𝑐

1

|𝑆𝑐 |
∑

(𝑖, 𝑗) ∈𝑆𝑐
𝛼𝑖 𝑗 ℓ

(
𝑦𝑖 𝑗 , 𝑦

𝑐
𝑖 𝑗

)
+ 1

|𝑆𝑡 |
∑

(𝑖, 𝑗) ∈𝑆𝑡
ℓ

(
𝑦𝑖 𝑗 , 𝑦

𝑐
𝑖 𝑗

)
+ 𝜆𝑐𝑅 (W𝑐 ) ,

(5)

where 𝛼𝑖 𝑗 ∈ [0, 1] is a parameter used to control the confidence

that we believe the sample (𝑖, 𝑗) is unbiased. When considering

the global setting, 𝛼𝑖 𝑗 shares a parameter value that we preset for

all the samples in 𝑆𝑐 , but in the local setting, 𝛼𝑖 𝑗 is an independent

parameter value learned by𝑀𝑐 .

• DelayedCombination Strategy (DelayC). Instead of introduc-
ing a confidence parameter, we propose a strategy called delayed

combination. This strategy directly applies the data of 𝑆𝑐 and 𝑆𝑡
to the training of𝑀𝑐 in an alternative manner. Specifically, in the

𝑆𝑐 step of each iteration,𝑀𝑐 is trained on the data of 𝑠 batches in

𝑆𝑐 . In the 𝑆𝑡 step, we randomly sample one batch of data from 𝑆𝑡
to train𝑀𝑐 . We repeat these two steps until all the data of 𝑆𝑐 are

used. The batch ratio is set to 𝑠 : 1, which can better ensure the

training of 𝑀𝑐 itself and the correction under the guidance of 𝑆𝑡 .

The final objective function of this strategy is,
min

W𝑐

1

|𝑆𝑐 |
∑

(𝑖, 𝑗) ∈𝑆𝑐 ℓ
(
𝑦𝑖 𝑗 , 𝑦

𝑐
𝑖 𝑗

)
+ 𝜆𝑐𝑅 (W𝑐 ) , 𝑆𝑐 step.

min

W𝑐

1

|𝑆𝑡 |
∑

(𝑖, 𝑗) ∈𝑆𝑡 ℓ
(
𝑦𝑖 𝑗 , 𝑦

𝑐
𝑖 𝑗

)
+ 𝜆𝑐𝑅 (W𝑐 ) , 𝑆𝑡 step.

(6)

4.4 Model Structure-Based Module
Finally, we return to the model itself through considering how

to directly use the pre-trained model 𝑀𝑡 to help the learning of

𝑀𝑐 . This is the most commonly adopted distillation strategy in

existing works. In order to help𝑀𝑐 with the guidance from𝑀𝑡 , we

assume that some embedded representations of𝑀𝑐 correspond to

some embedded representations of𝑀𝑡 . We constrain the selected

embedded representations in𝑀𝑐 to be similar to their corresponding

embedded representations in𝑀𝑡 . As a result,𝑀𝑐 will have a similar

pattern to𝑀𝑡 and thus may benefit from it. Note that the selected

embedded representations of𝑀𝑐 and𝑀𝑡 do not necessarily have the

same index. For example, suppose A is a 4-layer network and B is an

8-layer network, we may specify that each layer of A corresponds

to an even layer of B, namely 2, 4, 6 and 8. Based on this idea, we

develop the following formal definition of model structure-based

distillation. For the sake of discussion, as shown in Figure 3, we

classify all the embedded representations into three types with

different functions.

Definition 4 (D4). Amethod can be classified asmodel structure-
based distillation if and only if instead of using the labels and data,
the embedded representation trained on a uniform data 𝑆𝑡 is used to
help the learning of a non-uniform data 𝑆𝑐 .

Solutions. Next, we use the three strategies adopted in our

experiments as examples to illustrate how model structure-based

distillation can be realized.

Figure 3: Illustration of three types ofmodel structure-based
distillations, including feature embedding, hint and soft la-
bel. We use dotted arrows to indicate the matched pairs con-
sidered by different types of distillations.

• Feature Embedding Strategy (FeatE). Feature embedding are

embedded representations that are directly connected to the users

and items. In a neural network, it is usually the result of a one-hot

coding after a lookup operation; and in a low-rank model, it is

the users’ preference vector 𝑢 and the items’ attribute vector 𝑣 .
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As a special example, we think that the feature embedding of

the autoencoder refers to the weights related to the number of

items in the first layer and the last layer of the network. It may

be unreasonable to directly match the feature embedding in𝑀𝑐

with the that in 𝑀𝑡 , because 𝑀𝑡 may not learn sufficiently on

these user- and item-related embedded representations due to

the small data size. We propose the following two alternatives to

use the feature embedding in 𝑀𝑡 , including initialization of𝑀𝑐 ,

and concatenation with the parameters of𝑀𝑐 ,

Initialization. We have three options to choose the type of

feature embedding as the initialization of 𝑀𝑐 , including using

only user-related, only item-related, and both. In addition, if we

know which of the user-related and item-related ones is trained

better, we can further use the information from 𝑀𝑡 by setting

their update steps to 1 (for the better one) and 𝑠 (for the other,

> 1), respectively. We call it the FeatE-alter.
Concatenation.After the parameters of𝑀𝑐 are randomly initial-

ized, the feature embedding of𝑀𝑡 will be concatenated with these

parameters to form new parameters to train 𝑀𝑐 . Note that the

features embedded of𝑀𝑡 in the parameters will not be updated

during the training process.

• Hint Strategy. Hint refers to the hidden layer in a neural net-

work, also known as feature map [22]. They contain higher-order

non-linear relations between users or items. Note that in the

experiments we must use deep neural networks to implement

this strategy. After we specify hint for alignment in𝑀𝑐 and𝑀𝑡 ,

we explicitly model the difference between the two hints on the

objective function of 𝑀𝑐 . The final objective function of this

strategy is,

min

W𝑐

1

|𝑆𝑐 |
∑

(𝑖, 𝑗) ∈𝑆𝑐
ℓ

(
𝑦𝑖 𝑗 , 𝑦

𝑐
𝑖 𝑗

)
+ 𝜆𝑐𝑅 (W𝑐 )

+ 𝜆ℎ𝑖𝑛𝑡𝑡𝑐

𝑦ℎ𝑖𝑛𝑡𝑡 − 𝑦ℎ𝑖𝑛𝑡𝑐

2
𝐹
,

(7)

where 𝑦ℎ𝑖𝑛𝑡𝑐 and 𝑦ℎ𝑖𝑛𝑡𝑡 are the output of 𝑀𝑐 and 𝑀𝑡 on their

respective designated hint layers.

• Soft Label Strategy. Previous works have shown that training

the student network to mimic the output of the teacher network

on hard-labeled objectives does not bring much useful informa-

tion to the student network. But, by introducing softmax and

temperature operations to relax the label, training the student

network to keep the same output as the teacher network on a

soft label will result in a significant improvement [10]. We follow

a similar setup in this strategy. Note that in the experiments we

must also use deep neural networks to implement this strategy.

The final objective function of this strategy is,

min

W𝑐

𝛼

|D|
∑

(𝑖, 𝑗) ∈D
ℓ

(
softmax

(
𝑦𝑐
𝑖 𝑗

𝜏

)
, softmax

(
𝑦𝑡
𝑖 𝑗

𝜏

))
+ 1

|𝑆𝑐 |
∑

(𝑖, 𝑗) ∈𝑆𝑐
ℓ

(
𝑦𝑖 𝑗 , 𝑦

𝑐
𝑖 𝑗

)
+ 𝜆𝑐𝑅 (W𝑐 ) ,

(8)

where 𝜏 a is a temperature parameter, and𝛼 is a tunable parameter

that controls the importance of the soft labels.

4.5 Summary and Remarks
Based on the above description, we can see that different strategies

exhibit their own characteristics about how to make use of 𝑆𝑡 .

Some methods commonly used in counterfactual recommendation

can be incorporated into our framework. Label-based distillation

includes a direct method for learning an imputation model and its

variants. Sample-based distillation includes the IPS method [24, 31]

and other approaches as described in Section 2.2. Although we

introduce the four distillation methods in different modules, their

relations are close. This means that we can design new strategies

with different combinations of the four distillation methods, such

as the doubly robust method [7] and its variants [33]. Moreover,

they are also related to the types of knowledge (instance, feature

and model) and strategies (adaptive, collective and integrative) in

transfer learning [18, 19].

In addition, we must keep in mind that the different considera-

tions when using these four distillation methods. Although label-

based and sample-based distillations are easy to implement, they

need to consider the potential factors on the label and sample that

may affect the model, such as the differences in sample size and

the label distributions. The difference in the label distributions is

passed on to the distributions of the predicted labels, so that the

strategy of directly using the predicted labels may lead to poor re-

sults. The difference in data size means that𝑀𝑐 in a rough strategy

can almost ignore the guided information from 𝑆𝑡 . Feature-based

distillation relies on the accuracy of the method used to filter out

the causal and stable features. However, the current research in this

direction is still not sufficient, and the existing methods need more

time and computing resources. Model structure-based distillation

requires only the model itself without regarding to other potential

factors. But it is not easy to design an effective distillation structure

or select some good embedded representations.

5 EMPIRICAL EVALUATION
In this section, we conduct experiments with the aim of answering

the following two key questions.

• RQ1: How do the proposed methods perform against baselines?

• RQ2: How does 𝑆𝑡 improve the model trained on 𝑆𝑐?

5.1 Experiment Setup
5.1.1 Datasets. To evaluate the recommendation performance of

the proposed framework, the selected dataset must have a uniform

subset for training and test. We consider the following datasets in

the experiments, where the statistics are described in Table 3.

• Yahoo! R3 [17]: This dataset contains ratings collected from two

different sources on Yahoo! Music services, involving 15,400 users

and 1000 songs. The Yahoo! user set consists of ratings supplied

by users during normal interactions, i.e., users pick and rate items

as they wish. This can be considered as a stochastic logging policy

by following [24, 31], and thus the user set is biased. The Yahoo!

random set consists of ratings collected during an online survey,

when each of the first 5400 users is asked to provide ratings on ten

songs. The random set is different because the songs are randomly

selected by the system instead of by the users themselves. The

random set corresponds to a uniform logging policy and can be

considered as the ground truth without bias. We binarize the
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ratings based on a threshold 𝜖 = 3. Hence, a rating 𝑟𝑖 𝑗 > 𝜖 is

considered as a positive feedback (i.e., label 𝑦𝑖 𝑗 = 1), otherwise,

it is considered as a negative feedback (i.e., label 𝑦𝑖 𝑗 = −1). The
Yahoo! user set is used as a training set in a biased environment

(𝑆𝑐 ). For Yahoo! random set, we randomly split the user-item

interactions into three subsets: 5% for training in an unbiased

environment (𝑆𝑡 ), 5% for validation to tune the hyper-parameters

(𝑆𝑣𝑎), and the rest 90% for test (𝑆𝑡𝑒 ).

• Product: This is a large-scale dataset for CTR prediction, which

includes three weeks of users’ click records from a real-world

advertising system. The first two weeks’ samples are used for

training and the next week’s samples for test. To eliminate the

effects of the bias problems in our experiments, we only filter

out the samples at positions 1 and 2. There exists two polices

in this dataset: non-uniform policy and uniform policy which

are defined in Section 3.1. We can thus separate this dataset into

two parts, i.e., a uniform data and a non-uniform data. The non-

uniform data contains around 29 million records and 2.8 million

users, which is directly used as a training set named as 𝑆𝑐 . Next,

we randomly split the uniform data into three subsets by the

same way as that of Yahoo! R3, i.e., 5% as training set (𝑆𝑡 ), 5% as

validation set (𝑆𝑣𝑎), and the rest as test set (𝑆𝑡𝑒 ).

Table 3: Statistics of the datasets. P/N represents the ratio
between the numbers of positive and negative feedback.

Yahoo! R3 Product
#Feedback P/N #Feedback P/N

𝑆𝑐 311,704 67.02% 29,255,580 2.12%

𝑆𝑡 2,700 9.36% 20,751 1.57%

𝑆𝑣𝑎 2,700 8.74% 20,751 1.42%

𝑆𝑡𝑒 48,600 9.71% 373,522 1.48%

5.1.2 Evaluation Metrics. Following the settings of the previous

works [5, 33], we employ two evaluation metrics that are widely

used in industry recommendation, including the negative logarith-

mic loss (NLL) and the area under the roc curve (AUC). The NLL

evaluates the performance of the predictions,

NLL ≡ − 1

𝐿

𝐿∑
(𝑖, 𝑗) ∈Ω

log

(
1 + 𝑒−𝑦𝑖 𝑗 �̂�𝑖 𝑗

)
, (9)

where Ω denotes the validation set (when tuning the parameters) or

the test set (in evaluation), and 𝐿 denotes the number of feedback in

Ω. The AUC evaluates the performance of rankings and is defined

as follows,

AUC ≡
∑𝐿𝑝

(𝑖, 𝑗) ∈Ω+ Rank𝑖 𝑗 −
(𝐿𝑝
2

)(
𝐿𝑝

(
𝐿 − 𝐿𝑝

) ) , (10)

where Ω+
denotes a subset of the positive feedback in Ω, and 𝐿𝑝

denotes the number of feedback in Ω+
. Rank𝑖 𝑗 denotes the rank of

a positive feedback (𝑖, 𝑗) in all the 𝐿 feedback, which are ranked in

a descending order according to their predicted values. Note that

most users in the validation set 𝑆𝑣𝑎 and test set 𝑆𝑡𝑒 may only have

negative samples.

5.1.3 Baselines. To demonstrate the effectiveness of our proposed

framework, we include with the following baselines which are

widely used in recommendation scenarios.

Low Rank Baselines:
Biased Matrix Factorization (biasedMF).We first consider the

case where the proposed framework is implemented using a low-

rank model. We use biased matrix factorization (biasedMF) [12]

as the baseline, which is one of the most classic basic models in

recommender systems. In this method, a user 𝑖’s preference for an

item 𝑗 is formalized as𝑌𝑖 𝑗 = 𝑈𝑇
𝑖
𝑉𝑗 +𝑏𝑢𝑖 +𝑏𝑣 𝑗 . We directly learn user,

item and bias representations using the squared loss. All strategies

in the framework are implemented when𝑀𝑐 and𝑀𝑡 are a biasedMF

model.

Inverse-Propensity-ScoredMatrix Factorization (IPS-MF).To
test and compare the performance of the propensity-based causal

inference, we use a representative counterfactual-based recommen-

dation method as the second low-rank baseline, i.e., IPS-MF [24].

Note that we estimate the propensity scores via the naïve Bayes

estimator,

𝑃
(
𝑂𝑖, 𝑗 = 1|𝑌𝑖, 𝑗 = 𝑦

)
=
𝑃 (𝑌 = 𝑦,𝑂 = 1)

𝑃 (𝑌 = 𝑦) , (11)

where 𝑦 = {−1, 1} is the label, 𝑃 (𝑌 = 𝑦,𝑂 = 1) denotes the ratio of

the feedback labeled as 𝑦 in the observed feedback, and 𝑃 (𝑌 = 𝑦)
denotes the ratio of the feedback labeled as 𝑦 in an unbiased set.

They are counted by 𝑆𝑐 ∪ 𝑆𝑡 and 𝑆𝑡 , respectively, and the subscripts

are dropped to reflect that the parameters are tied across all 𝑖 and 𝑗 .

Neural Networks Baselines:
AutoEncoder (AE).We next consider the case where the proposed

framework is implemented using a neural network model. We

choose the autoencoder as the baseline to include more model

choices. Except for the hint and soft label strategies where we use a

five-layer autoencoder, we use the original three-layer autoencoder

by default. All strategies in the framework are also implemented

when𝑀𝑐 and𝑀𝑡 are an autoencoder model. Note that in the FeatE-

user strategy, we use theweights of the first layer of the autoencoder,
and in the FeatE-item strategy, we use the weights of the last layer

of the autoencoder.

Deep Logistic Regression (DLR). Since the DGBR model used in

feature-based distillation requires logistic regression components,

autoencoder are not suitable. Hence, we use DLR as a baseline

in feature-based distillation. This approach consists of two parts:

i) deep autoencoder model, which reconstructs the input-vectors

in a high-dimensional space and encodes it into low-dimensional

codes, and ii) logistic regression model, which handles the manual

feature codes and optimizes the model parameters. Considering the

odds of deep autoencoder on non-linear dimensionality reduction,

we employ it to convert the high-dimensional data into some low-

dimensional codes by defining a three-level encoder network and a

three-level decoder network. Then we feed the output of this deep

autoencoder model to the LR model.

5.1.4 Implementation Details. We implement all the methods on

TensorFlow
1
. We perform grid search to tune the hyper-parameters

for the candidate methods by evaluating the AUC on the validation

1
https://www.tensorflow.org
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set 𝑆𝑣𝑎 , where the range of the values of the hyper-parameters are

shown in Table 4.

Table 4: Hyper-parameters tuned in the experiments.

Name Range Functionality

𝑟𝑎𝑛𝑘 {10, 50, 100, 200} Embedded dimension

𝜆
{
1𝑒−5, 1𝑒−4 · · · 1𝑒−1

}
Regularization

𝛼 {0.1, 0.2 · · · 0.9} Loss weighting

𝑙
{
2
5, 26 · · · 29

}
Batch size

𝑠 {1, 3, 5 · · · 19, 20} Alternating steps

𝜏 {2, 5, 10, 20} Temperature

5.2 RQ1: How Do the Proposed Methods
Perform Against Baselines?

The comparison results are shown in Table 5 and Table 6. Because

feature-based distillation requires a special baseline DLR as de-

scribed in Section. 5.1.3, we list its results separately in Table 6.

As shown in the tables, our methods perform better than all the

compared methods in most cases. More specifically, we have the

following observations: (1) The sample combination of 𝑆𝑐 and 𝑆𝑡 im-

proves the performance in all cases. The propensity-based method

and the method using only 𝑆𝑡 have similar performance, i.e., they

have superior NLL and uncompetitive AUC on Yahoo! R3, but on

Product, their NLL will also deteriorate. One possible reason is

that 𝑆𝑐 and 𝑆𝑡 of Product dataset have a close ratio between the

positive and negative feedback. (2) The trends of AUC and NLL

metrics may be inconsistent. For example, some of our strategies

have a better AUC value but a poor NLL value, while the uniform

strategy is the opposite. Since the NLL value is susceptible to the

difference in label distribution between the training and test sets,

we mainly consider AUC. (3) Most of the bad cases of our proposed

methods appear in the feature embedding strategy. This may be

because the feature embedding in 𝑆𝑡 is not sufficiently trained as

described in Section 4.4. We can also see that FeatE-alter can effec-

tively alleviate this issue. In addition, a special bad case appears

when using WeightC-local on Product. We think it is still a chal-

lenge that modeling the local weights with a large-scale dataset. (4)

The improvements brought by all the proposed strategies vary in

different model implementations and different data scales. It means

that each strategy’s ability to use 𝑆𝑡 depends on distinct scenarios.

We will conduct in-depth research on some strategies separately in

the future.

5.3 RQ2: How Do 𝑆𝑡 Improve the Model
Trained on 𝑆𝑐?

To explore the form of the useful knowledge provided by 𝑆𝑡 , we

conduct an in-depth analysis using the first three best strategies

implemented with low-rank models on the Yahoo! R3 dataset as an

example, i.e., WeightC-local, DelayC and Refine. Figure 4(a) shows

a visualization of the weight parameters learned from the WeightC-

local strategy. User IDs and item IDs are sorted in ascending order

w.r.t. the user activity and item popularity, respectively. As the item

popularity increases, the weight value decreases, and this trend will

gradually be weaken as the user activity increases. This means that

the useful knowledge provided by 𝑆𝑡 is to enhance the contribution

of the active users and tail items.
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Figure 4: (a) Visualization of the weight parameters learned
by theWeightC-local strategy. (b) The ranking difference be-
tween the Refine strategy and the Base strategy for the pos-
itive samples in the validation set.

The original DelayC strategy randomly samples one batch of

data from 𝑆𝑡 to guide𝑀𝑐 . We can control the sampling method to

analyze the efficacy of different types of data. Table 7 shows the

results under different sampling methods. The head users refers
to that we only sample the data corresponding to the first 50% of

the most active users in 𝑆𝑡 , while the tail users means that the last

50% of users are sampled. The head items and tail items are defined
in a similar way. We find that although the performance of the

four sampling methods is not as good as random sampling, the

head users and tail items are closer to the performance of random

sampling than the other two sampling methods. This is consistent

with the findings of Figure 4(a).

Finally, we examine the ranking difference between the Refine

strategy and the Base strategy for positive samples in the validation

set. The results are shown in Figure 4(b). Item IDs are sorted in the

ascending order of popularity. We find that the Refine strategy fol-

lows the intuition that a popular item is more likely to get feedback

than a tail item. It tries to lower the ranking of tail items that may

be recommended to the top and raise the ranking of popular items

that may be recommended to the tail, as shown on the both sides

of Figure 4(b). In the middle of Figure 4(b), we find that the rank

difference of most items is not large, which means that a less popu-

lar item still has an opportunity to catch up with a more popular

item. Since the Refine strategy achieves the best performance, we

believe it is a good strategy to combine the advantages of 𝑆𝑐 and 𝑆𝑡 .

6 FUTUREWORKS
We have proposed some approaches about how to mine some useful

knowledge from a uniform data to improve the modeling of a non-

uniform data. Counterfactual recommendation via a uniform data is

still a rich research field. In this section, we discuss some interesting

and promising future directions.

Label-Based Module. Because 𝑆𝑡 collected from different sce-

narios may have different label distributions, the distribution dif-

ference between 𝑆𝑡 and 𝑆𝑐 can be large or small. It is necessary to

design some more robust strategies for addressing the difference.
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Table 5: Comparison results on Yahoo! R3 and Product except for the feature-based distillation, which are reported in Table 6.
(∪) in the Strategy column indicates that the used data is 𝑆𝑐 ∪ 𝑆𝑡 .

Yahoo! R3 Product
Low Rank (MF) Neural Nets (AE) Low Rank (MF) Neural Nets (AE)

Module Strategy AUC NLL AUC NLL AUC NLL AUC NLL

Baseline

Base (𝑆𝑐 ) +0.00% +0.00% +0.00% +0.00% +0.00% +0.00% +0.00% +0.00%

Uniform (𝑆𝑡 ) -21.76% +13.43% -24.88% +11.78% +0.68% -43.98% +2.65% +33.17%

Combine (∪) +0.27% +1.30% +0.38% +0.84% +0.62% +1.00% +2.31% +2.31%

Propensity (∪) -0.71% +23.86% — — -9.17% -110.48% — —

Label Bridge (∪) +0.48% +2.74% +1.02% +4.86% +8.74% -12.02% +4.54% +36.85%
Refine(∪) +1.50% -12.09% +0.56% -0.45% +0.22% -0.46% +2.58% +25.70%

Sample

CausE (∪) +0.22% +1.07% — — +3.85% +1.87% — —

WeightC-local (∪) +0.68% +6.62% +0.65% +1.40% -13.28% +2.10% -1.76% +18.23%

WeightC-global (∪) +0.54% +3.50% +0.92% +1.84% +6.22% +2.54% +5.59% +25.63%

DelayC (∪) +0.74% +5.10% +0.49% +0.88% +1.62% +1.48% +6.06% +20.02%

FeatE-item (∪) -0.03% +0.41% -1.00% -0.50% -1.07% +1.10% -3.00% +22.34%

FeatE-user (∪) +0.11% +0.36% +0.43% +2.02% -0.27% -10.96% -2.15% +2.16%

FeatE-both (∪) +0.34% +1.46% -1.58% -1.15% +0.91% -42.63% +2.36% -0.08%

Model FeatE-alter (∪) +0.59% +2.70% +0.83% +1.86% +0.72% -41.78% +4.37% +2.14%

Structure FeatE-concat (∪) +0.34% +1.46% +0.05% +1.80% +0.54% -41.98% +5.07% +34.83%

Hint (∪)a — — +1.04% -6.20% — — +2.80% -56.87%

Soft Label (∪)a — — +1.10% +3.34% — — +3.84% -43.73%

a
Note that since these strategies rely on deep networks, we use the deep version of the base strategy as a reference to report the

results, which is Deep AutoEncoder.

Table 6: Comparison results of the feature-based distillation.

Module Strategy (DLR) Yahoo! R3 Product
AUC Logloss AUC Logloss

Feature

Base (𝑆𝑐 ) +0.00% +0.00% +0.00% +0.00%

Uniform (𝑆𝑡 ) -11.61% +73.14% -30.26% -26.64%

Combine (∪) +0.69% +0.06% +0.66% +0.88%

DGBR (∪) +1.66% +32.50% +1.64% +0.96%

Table 7: Comparison results of the DelayC strategy with dif-
ferent ways of constructing the batch data from 𝑆𝑡 .

Strategy Sampling Method AUC NLL

DelayC

Random 0.7329 -0.5590

Head Users 0.7303 -0.5706

Tail Users 0.7251 -0.5630

Head items 0.7252 -0.5740

Tail items 0.7306 -0.5599

We can learn different imputation models with 𝑆𝑡 , among which

one promising direction is about how to ensemble the imputed

labels from different imputation models to correct the labels of the

biased samples. How to better combine the imputed label with the

true label of 𝑆𝑐 in a more sophisticated manner is another promising

direction.

Feature-Based Module. The current stable feature approach
[13] needs much time and computing resources. For implementing

the industry recommender system, we need more efficient methods

to learn the stable features. Besides, the current approach only

makes use of the feature information in each sample to learn the

stable features, while the label in each sample from 𝑆𝑡 is more stable

and unbiased. So how to filter out the stable features with both

labels and features in 𝑆𝑡 is another interesting research question.

Sample-Based Module. The difference between the data size

of 𝑆𝑡 and that of 𝑆𝑐 is a challenge for sample-based methods. This

difference increases the difficulty of model training, e.g., 𝑀𝑡 may

converge faster than𝑀𝑐 because the number of 𝑆𝑡 is much smaller.

A large difference in the number means that 𝑆𝑡 has very little

corrective effect on 𝑆𝑐 , which may also weaken the guiding role

of 𝑆𝑡 . One promising direction is to use the information in 𝑆𝑡 to

filter out a more unbiased subset from 𝑆𝑐 , or use the information in

𝑆𝑐 to perform data augmentation on 𝑆𝑡 . Instead of using the label

information, another promising direction is that we can consider

modeling the preference ranking relation between 𝑆𝑡 and 𝑆𝑐 .

Model Structure-Based Module. The feature embeddings ob-

tained by 𝑆𝑡 are often not fully trained due to the size of 𝑆𝑡 . A

promising direction is to design a good mutual learning strategy
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for 𝑀𝑡 and 𝑀𝑐 instead of pre-training 𝑀𝑡 before using it to train

𝑀𝑐 . The current distillation structure selection methods are based

on enumeration or empirical methods. How to effectively design a

good distillation structure is another promising direction, for which

AutoML has the potential to find a reasonable model structure based

on 𝑆𝑡 .

Others. There are also many other directions closely related

to the framework. For example, the visualization or interpretation

of the useful information (or knowledge) learned from 𝑆𝑡 ; further

exploration of the results at a micro level, i.e., the impact on each

user or each item; and the relation between the size of 𝑆𝑡 and the

performance of the model. In addition, we would like to further

investigate the trade-off of training on 𝑆𝑐 introduced by 𝑆𝑡 and gain

more theoretical insight into why it is effective. These theoretical

insights can also inspire us to design better distillation strategies.

7 CONCLUSIONS
In this work, motivated by the observation that simply modeling

with a uniform data can alleviate the bias problems, we propose a

general knowledge distillation framework for counterfactual rec-

ommendation via uniform data, i.e., KDCRec, including label-based,

feature-based, sample-based and model structure-based distilla-

tions. We conduct extensive experiments on both public and prod-

uct datasets, demonstrating that the proposed four methods can

achieve better performance over the baseline models. We also ana-

lyze the proposed methods in depth, and discuss some promising

directions worthy of further exploration.
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