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ABSTRACT
Although knowledge graph has shown their effectiveness in miti-
gating data sparsity in many recommendation tasks, they remain
underutilized in context-aware recommender systems (CARS) with
the specific sparsity challenges associated with the contextual fea-
tures, i.e., feature sparsity and interaction sparsity. To bridge this
gap, in this paper, we propose a novel pairwise intent graph embed-
ding learning (PING) framework to efficiently integrate knowledge
graphs into CARS. Specifically, our PING contains three modules:
1) a graph construction module is used to obtain a pairwise in-
tent graph (PIG) containing nodes for users, items, entities, and
enhanced intent, where enhanced intent nodes are generated by
applying user intent fusion (UIF) on relational intent and contextual
intent, and two sub-intents are derived from the semantic informa-
tion and contextual information, respectively; 2) a pairwise intent
joint graph convolution module is used to obtain the refined em-
beddings of all the features by executing a customized convolution
strategy on PIG, where each enhanced intent node acts as a hub
to efficiently propagate information among different features and
between all the features and knowledge graph; 3) a recommenda-
tion module with the refined embeddings is used to replace the
randomly initialized embeddings of downstream recommendation
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models to improve model performance. Finally, we conduct exten-
sive experiments on three public datasets to verify the effectiveness
and compatibility of our PING.
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1 INTRODUCTION
Different from a traditional recommendation scenario, context-
aware recommender systems (CARS) aim to integrate various con-
textual information to provide the users with more accurate fine-
grained recommendations [2, 36]. The contextual information can
be either explicitly observed or implicitly inferred [6, 22], and
they can be integrated into multiple stages of the recommendation
task, such as the pre-filtering, post-filtering, or modeling stages [1].
Among them, context-aware recommendation aimed at improv-
ing the modeling stage is a more popular paradigm and existing
works can be divided into two main categories according to the
underlying model architecture, including machine learning and
neural network-based methods. The former aims to incorporate
the contextual information into the model from the perspective
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of high-dimensional settings, and some classical machine learn-
ing methods can be adopted to solve it effectively, especially ma-
trix factorization-, tensor factorization-, and factorization machine-
based methods [4, 11, 19, 33, 37]. The latter utilizes some complex
network architectures to more flexibly enhance and capture the re-
lationships between the contextual features and the other features
in different ways, such as attention mechanisms [17, 38], convolu-
tional networks [9, 30] and graph learning techniques [5, 15, 16, 29].

Although existing methods for CARS have shown promising
results, they still suffer from two specific sparsity challenges asso-
ciated with the contextual features, i.e., feature sparsity and inter-
action sparsity [15]. Taking Amazon-Book used in our experiments
as an example, Fig. 1(a) shows the interaction sparsity w.r.t the
users and items, and feature sparsity, respectively, where the for-
mer means that the numbers of the associated contextual features
are a long-tailed distribution w.r.t. the users (or items), and the latter
means that most of the contextual features have a low frequency.
Obviously, these two sparsity challenges make these methods prone
to performance bottlenecks on inactive users, unpopular items, or
uncommon contextual features. Given that knowledge graph (KG)
is an effective solution to the data sparsity problem in many tra-
ditional recommendation tasks, an intuitive idea is to integrate it
into CARS to alleviate the specific sparsity challenges mentioned
above. However, a key difference is that these sparse challenges in
CARS are closely related to the contextual features, and the contex-
tual features play an essential role in CARS. As shown in Fig. 1(b),
this means that the introduction of KG in CARS not only needs to
enhance the information of users and items like the traditional rec-
ommendation but also needs to enhance the contextual information
and the relationship between it and other information.
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(a) Specific data sparsity in
CARS

User ID Item IDContext List Entity ID

(b) Integrate KG into the traditional recommendation
or CARS

Figure 1: (a) The distributions of the number of contextual
features associated with each user (top row) and item (mid-
dle row), as well as the frequency statistics of the contextual
features (bottom row), on Amazon-Book; and (b) The differ-
ence after integrating knowledge graph in the traditional
recommendation and context-aware recommendation.

These unique properties make existing knowledge graph-based
recommendation methods not easily migrated to CARS, and this
also motivates us to design a more reasonable way to make CARS
more effectively compatible with KG. In this paper, we propose a
novel pairwise intent graph embedding learning (PING) framework
to achieve this goal. First, a graph construction module is used
to generate a novel pairwise intent graph (PIG) for CARS, where
KG and the context features are used to construct some additional
enhanced intent nodes through the proposed user intent fusion

(UIF) strategy. Specifically, intent representations from two different
perspectives are first learned, i.e., using the contextual information
and the semantic information from KG to capture contextual intent
and relational intent, respectively. Then, the two sub-intents are
fused using the item as a hub connecting the contextual features
and KG, which can well model the complex node relations after
integrating KG in CARS. Second, a pairwise intent joint graph
convolution module is used to exploit the above graph structure
to obtain various refined embeddings, where each enhanced intent
node acts as a hub to efficiently propagate information among
different features and between all the features and KG. The obtained
refined embeddings of all the features can later be integrated into
an existing CARS model in a recommendation module to replace
the original random initialization, thus improving its performance.
Finally, we conduct extensive experiments on three public datasets
to verify the effectiveness and compatibility of our PING.

2 RELATEDWORK
In this section, we briefly review some relevant works on two
research topics, including context-aware recommender systems
and knowledge graph-based recommender systems.

2.1 Context-Aware Recommender Systems
Context-aware recommender systems (CARS) aim to introduce
contextual information to provide the users with a fine-grained rec-
ommendation, where the contextual information can be either ex-
plicitly observed or implicitly inferred [1, 6, 22]. Typically, the con-
textual information can be used in the pre-filtering, post-filtering, or
modeling stages of a recommendation task, where the last one is the
more popular paradigm [1]. Depending on the model architecture
employed, existing works in this line can be divided into two main
categories, including machine learning and neural network-based
methods. The former aims to extend a recommendation task to the
high-dimensional settings to model various contextual information,
and some representative works include matrix factorization, tensor
factorization and factorizationmachines and their different variants,
etc [4, 11, 19, 20, 33, 37]. The latter aims to more flexibly capture
high-order and nonlinear relationships between different features
by introducing some complex neural network structures, such as
attention mechanisms [17, 38], convolution networks [9, 30], and
graph learning techniques [5, 15, 16, 29]. This helps to learn bet-
ter various feature information in CARS, especially the contextual
features that play a crucial role. In addition, some work aims to com-
bine the techniques of these two lines to synergistically produce
better performance, such as NFM [10] and xDeepFM [13]. GCM [29]
and UEG [15] are the two most related works to ours. GCM designs
an attributed user-item bipartite graph for CARS, in which the
contextual features are used as edge attributes between the users
and items. Since the contextual features cannot benefit from the
high-order propagation of information in GCM, UEG proposes a
user-event graph structure, in which the intent driven by the con-
textual information is used as a central node, so that the contextual
features can effectively participate in high-order propagation. Our
PING is significantly different from theirs. In particular, we propose
a pairwise intent graph structure, which introduces some enhanced
intent nodes to better combine the contextual information with the
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semantic information in the knowledge graph and is beneficial to
enhance the connection between different features further.

2.2 Knowledge Graph-Based Recommender
Systems

As an auxiliary data source with rich semantic information, knowl-
edge graph (KG) has been widely used in various recommendation
tasks and demonstrated its effectiveness. Existing knowledge graph-
based recommendation methods can be mainly divided into four
categories, including embedding-based, path-based, propagation-
based, and hyperbolic-based methods. Embedding-based meth-
ods directly obtain the entity and relation embeddings through
various knowledge graph embedding (KGE) methods and intro-
duce them into recommender systems in different ways [3, 23, 34].
Path-based methods aim to find semantic paths in KG, which are
then used to construct latent high-order relations between the
users and items. These paths can often be modeled by recurrent
neural networks and attention mechanisms to predict user pref-
erences [21, 27]. Propagation-based methods iteratively perform
neighbor node-based information aggregation mechanisms and
can discover high-order relations in an end-to-end manner. This
is also the most popular line to integrate KG in recommendation
systems, and many representative methods have emerged, such as
CKAN [28], KGAT [25] and KGIN [26]. Hyperbolic-based methods
aim to explore how to effectively use hyperbolic geometry and hy-
perbolic embeddings in recommender systems with KG to improve
recommendation performance, which is an emerging direction [7].
Given the effectiveness of KG in addressing data sparsity in recom-
mender systems [31], it is also intuitively beneficial for CARS tasks
with two special issues, i.e., feature sparsity and interaction sparsity.
However, although there are numerous knowledge graph-based
recommendation methods, only a few works involve context-aware
recommendation, and these works only consider preprocessing KG
into the embeddings and then incorporate them into the models,
and all the target a limited applicable scenario [18, 35]. Our PING
aims to use an end-to-end manner to more effectively make KG
beneficial to the learning of all the features in CARS, especially the
contextual features, and it is easy to extend to different scenarios.

3 PRELIMINARIES
3.1 Problem Definition
In this subsection, we briefly give the definition and necessary
notation of a context-aware recommendation task with the knowl-
edge graph. We denote the sets of users, items, and contextual fea-
tures in a typical contextual recommender system (CARS) as U =

{𝑢1, 𝑢2, . . . , 𝑢𝑀 }, I = {𝑖1, 𝑖2, . . . , 𝑖𝑁 } and C = {C1, C2, . . . , C𝑅}, re-
spectively. The common contextual features can be timestamps
and locations, etc., and we do not consider the additional features
of users and items for simplicity. Then, a user-item interaction
instance can be represented as,

s𝑘 =

[
𝑢𝑘 , 𝑖𝑘 ,C𝑘

]
, (1)

where 𝑢𝑘 ∈ U, 𝑖𝑘 ∈ I and C𝑘 ⊂ C denote the user, item, and
context involved in the 𝑘-th instance, respectively. Furthermore, we
assume that a knowledge graph G𝑘𝑔 = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ V, 𝑟 ∈ R}

associated with the items is available, where each triple (ℎ, 𝑟, 𝑡) in-
dicates that a relation 𝑟 exists from head entity ℎ to tail entity 𝑡 . For
example, (𝑇𝑜𝑚 𝐶𝑟𝑢𝑖𝑠𝑒, 𝑠𝑡𝑎𝑟,𝑇𝑜𝑝 𝐺𝑢𝑛) describes that Tom Cruise is
the star of movie Top Gun. The goal of context-aware recommen-
dation with the knowledge graph is to use a knowledge graph as
an auxiliary data source and accurately predict an item 𝑖 that is
most likely to be interacted by a user 𝑢 under a context C. Obvi-
ously, accurately learning and integrating contextual information
is crucial for CARS. However, as mentioned earlier, two specific
data sparsity problems, i.e., feature sparsity and interaction sparsity,
pose challenges for this.

3.2 Base Model
In this work, we focus on utilizing a new graph structure and graph
embedding learning to improve the representation of all the features
in CARS, which can replace randomly initialized representations
and enable downstream recommendation models to effectively al-
leviate the data sparsity problem. Therefore, following previous
work [4, 8, 30], we take the factorization machine as an example
of the downstream recommendation model and refer to it as the
base model in this paper. Note that in order to verify the compati-
bility of our framework, we will also analyze the performance of
our framework with other types of downstream recommendation
models in the experiments.

3.2.1 Initial Embedding. In practice, an instance s𝑘 in context-
aware recommendation is usually represented in a sparse high-
dimensional binary form, which may be one-hot vectors or multi-
hot vectors. By applying the corresponding embedding layer to each
feature in s𝑘 , where the embedding layer contains an embedding
table associated with the feature values, we can obtain their dense
low-dimensional real-valued form. Finally, we concatenate these
embedding representation vectors to get the representation of the
entire instance,

Es𝑘 = [e𝑢𝑘 , e𝑖𝑘 , eC𝑘 ] . (2)

3.2.2 Feature Interaction. After taking the embedding representa-
tion of an instance as input, the factorization machine uses a feature
interaction layer involving second-order interactions to capture the
user preferences,

𝑦 (s𝑘 ) = 𝜎 (𝑏𝑔 +
∑︁

𝑏★ + 1
2
[(
∑︁

e★)2 −
∑︁

e⊤★e★]), (3)

where ★ ∈ {𝑢𝑘 , 𝑖𝑘 ,C𝑘 }, 𝑏𝑔 is the global bias, 𝑏★ is the feature bias
term, and 𝜎 (·) is the sigmoid activation function.

3.2.3 Model Training. We use the point-wise log loss as the objec-
tive function in our experiments,

L = − 1
|S′ |

∑︁
(s𝑖 ,𝑦) ∈S′

𝑦𝑖 log𝑦 (s𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑦 (s𝑖 )), (4)

where S is the set of interaction instances, S′ =S∪S− , and S−

is a set of negative instances randomly selected for each positive
instance in S from a candidate set of items that the corresponding
user has not interacted with under the same context.
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4 PAIRWISE INTENT GRAPH EMBEDDING
LEARNING

As mentioned in Sec. 2, knowledge graphs have been shown to help
alleviate data sparsity in recommender systems. However, most
of the existing works for context-aware recommendation rarely
involve knowledge graphs, and systematic guidance to effectively
utilize knowledge graphs is still lacking. To bridge this gap, we
propose a pairwise intent graph (PIG) to effectively integrate the
semantic information of knowledge graphs with the user, item, and
contextual information, where sub-intents driven by their respec-
tive information will be fused into the enhanced intent node to
enhance information propagation. We coin the framework as pair-
wise intent graph embedding learning (PING). Our PING consists
of three modules, including graph construction, pairwise intent
joint graph convolution, and downstream recommendation with
the refined embedding vectors. Next, we will introduce each mod-
ule in detail according to the training pipeline. We illustrate the
architecture of our proposed framework in Fig. 2.

4.1 Graph Construction
4.1.1 Personal Graph Combined with Knowledge Graph. All the
historical interaction behaviors of a user in CARS can usually be
organized into a form of personal graph G𝑝𝑔 =

〈
V𝑝𝑔, E𝑝𝑔

〉
[32], in

which the user node representing oneself is used as a center. As
shown on the left side of Fig. 2, the nodes include the user ID and
the interacted items, and the edges include interactions between the
users and the items, and temporal relationships between the items,
i.e.,V𝑝𝑔 = {𝑢}∪I and E𝑝𝑔 = E𝑢𝑖∪E𝑖𝑖 . Note that a list of contextual
features is used as edge features of E𝑢𝑖 . After the corresponding
mapping between items and entities, the personal graph can fur-
ther integrate KG. Formally, we have G𝑝𝑔&𝑘𝑔 =

〈
V𝑝𝑔&𝑘𝑔, E𝑝𝑔&𝑘𝑔

〉
,

V𝑝𝑔&𝑘𝑔 = {𝑢} ∪ I ∪V and E𝑝𝑔&𝑘𝑔 = E𝑢𝑖 ∪ E𝑖𝑖 ∪ E𝑖𝑣 ∪ E𝑣𝑣 . Simi-
larly, a relation 𝑟 can be viewed as an edge attribute on E𝑖𝑣 and E𝑣𝑣 .
Obviously, it is very difficult to apply this straightforward graph
structure in CARS. On one hand, the existence of many heteroge-
neous nodes means that an unreasonable convolution method will
bring too much noise in the information propagation. On the other
hand, the entities are weakly connected to the user and contextual
information, which may also weaken the extent to which such
information can benefit from KG.

4.1.2 Pairwise Intent Graph. To address the above problems, we
propose a new graph structure called pairwise intent graph (PIG)
for the context-aware recommendation. Specifically, to construct
the pairwise intent graph, we propose user intent fusion (UIF) to
capture the fine-grained user intent in each instance and generate
corresponding enhanced intent nodes T = {𝑡1, 𝑡2, . . . , 𝑡𝑘 , . . .}. First,
we model a sub-intent (i.e., relational intent) driven by the semantic
information of KG. The idea behind this process is that the users
usually interact with the items because of some relations between
the entities, for example, a user may give feedback because he likes
the star or director of a movie. Inspired by previous works [3, 26],
we define a set of shared intents P derived from the set of relations
in KG, one of which is computed as follows, i.e., we assume that
there is a candidate set of |P | relational intents from which each

user can find their own.

e𝑝 =
∑︁
𝑟 ∈R

𝛼𝑟𝑝e𝑟 , (5)

𝛼𝑟𝑝 =
exp(𝑤𝑟𝑝 )∑

𝑟 ′∈R exp(𝑤𝑟 ′𝑝 )
, (6)

where 𝑝 ∈ P, e𝑟 is the embedding of a relation 𝑟 , and 𝑤𝑟𝑝 is a
trainable weight indicating the degree of association between a
certain relation 𝑟 and a certain shared intent 𝑝 . Since shared intent is
global, we further introduce user information to obtain personalized
relational intent 𝑡 ′𝑢 as follows. We refer to the above process as the
relational intent attention generation, and an illustration of it can
be found on the left side of Fig. 2.

e𝑡 ′𝑢 =
∑︁
𝑝∈P

𝛽𝑢𝑝e𝑝 , (7)

𝛽𝑢𝑝 =
exp(e⊤𝑝 e𝑢 )∑

𝑝′∈P exp(e⊤
𝑝′e𝑢 )

. (8)

Second, we model a sub-intent (i.e., contextual intent) driven
by contextual information. Assume that the number of context
features associated with each instance is defined as 𝑍 , i.e., C𝑘 =

{𝑐𝑘1 , 𝑐
𝑘
2 , . . . , 𝑐

𝑘
𝑍
}. Inspired by previous works [15], since a user’s

behavior may also be influenced by the preceding behaviors rather
than the context alone, we additionally introduce a context-specific
feature 𝑐𝑘

𝑍+1 to represent the last interacted item before the current
instance. Then, a user’s contextual intent on an instance is obtained
as follows. The idea behind this process is to capture a subset
of contextual features that a user pays more attention to in an
interaction.

𝛾𝑘𝑧 = Softmax(W⊤
0 Relu(W1e𝑢𝑘 +W2e𝑐𝑘𝑧 + b1)), (9)

e𝑡𝑘 =

𝑍+1∑︁
𝑧=1

𝛾𝑘𝑧 e𝑐𝑘𝑧 , (10)

where W0 ∈ R𝑑×1,W1,W2 ∈ R𝑑×𝑑 , b1 ∈ R𝑑×1 are trainable pa-
rameters, 𝑑 is the embedding size, and e𝑡𝑘 is the embedding rep-
resentation of the intent node corresponding to the 𝑘-th instance.
We refer to the above process as the contextual intent attention
mechanism, and an illustration of it can be found on the right side
of Fig. 2. Finally, we fuse the two sub-intents to obtain a more fine-
grained user intent and introduce it as an enhanced intent node
into the proposed pairwise intent graph. Here we use the mean
fusion for simplicity, i.e.,

e𝑡𝑘 =
(e𝑡 ′𝑢 + e𝑡𝑘 )

2
. (11)

The idea behind the proposed user intent fusion is that sub-intents
obtained by independent modeling avoid the introduction of noise,
and the fusion of sub-intents enhances the association between
semantic information and user and contextual information.

4.2 Pairwise Intent Joint Graph Convolution
Clearly, existing graph embedding learning techniques are unsuit-
able for our pairwise intent graph due to the introduction of KG
and enhanced intent nodes. Therefore, in this section, we introduce
the proposed pairwise intent joint graph convolution to utilize the
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Figure 2: The architecture of our PING framework consists of three modules: 1) the graph construction module is used to
construct the pairwise intent graph, in which user intent fusion is used to obtain the required sub-intents from knowledge
graph and contextual information, respectively, and fuse them to form the enhanced intent nodes; 2) the pairwise intent
joint graph convolution module is used to exploit the above graph structure to obtain various refined embeddings; and 3) the
recommendation module uses the refined feature embeddings to improve the performance of a downstream recommendation
model.

newly proposed graph structure fully. Specifically, our goal is to
effectively use KG to enhance the high-order information synergy
among the users, items, and contexts through the constructed en-
hanced intent nodes, thereby further alleviating the data sparsity
problem and improving the recommendation performance of CARS.
For ease of understanding, the information propagation for differ-
ent nodes in pairwise intent joint graph convolution is illustrated
in Fig. 3.

User ID

Item ID

Context List

Contextual Intent

Enhanced Intent

Entity ID

Relation ID

Figure 3: An illustration of information propagation for the
nodes of users, items, contextual features, and entities in
pairwise intent joint graph convolution.

4.2.1 Information Propagation for the Users. For a user, we expect
it can effectively capture the item and contextual information with
the assistance of knowledge graphs. Therefore, as shown in the
upper left corner of Fig. 3, we use an enhanced intent node as the
hub to complete the desired information propagation,

p(ℎ)
𝑢𝑘 ,𝑘

= p(ℎ−1)
𝑖𝑘

+ p(ℎ−1)
𝑡𝑘

, (12)

where p(ℎ)
𝑢𝑘 ,𝑘

is the information representation passed to the user
associated with the 𝑘-th instance in layer ℎ of graph convolution,
p(ℎ−1)
𝑖𝑘

and p(ℎ−1)
𝑡𝑘

are the item embedding and enhanced intent

node embedding at layer ℎ − 1, respectively, and p(0)
𝑖𝑘

= e𝑖𝑘 , p
(0)
𝑡𝑘

=

e𝑡𝑘 . We then use an aggregation function to obtain each user’s
embedding at layer ℎ,

p(ℎ)𝑢 =
1√︁

|{𝑘 |𝑢𝑘 = 𝑢}|

∑︁
𝑘,𝑢𝑘=𝑢

p(ℎ)
𝑢,𝑘

. (13)

Finally, we can obtain a refined user embedding by averaging the
embeddings of each layer,

p̂𝑢 =
1

𝐻 + 1

𝐻∑︁
ℎ=0

p(ℎ)𝑢 . (14)

4.2.2 Information Propagation for the Items. Similarly, as shown
in the upper right corner of Fig. 3, we use an enhanced intent node
as the hub with the assistance of knowledge graphs to enable items
to effectively capture the user and contextual information,

p(ℎ)
𝑖𝑘 ,𝑘

= p(ℎ−1)
𝑢𝑘

+ p(ℎ−1)
𝑡𝑘

, (15)

where p(ℎ−1)
𝑢𝑘

is the user embedding at layer ℎ − 1. The embedding
of an item 𝑖 at layer ℎ can be obtained by using an aggregation
function and receiving additional information,

p(ℎ)
𝑖

=
1√︁

|{𝑘 |𝑖𝑘 = 𝑖}|

∑︁
𝑘,𝑖𝑘=𝑖

p(ℎ)
𝑖,𝑘

+ 1
|N𝑖 |

∑︁
(𝑟,𝑣) ∈N𝑖

e𝑟 ⊙ p(ℎ−1)
𝑣 , (16)

where N𝑖 denotes the set of relations and entities associated with
item 𝑖 , p(ℎ−1)

𝑣 is the entity embedding at layer ℎ − 1 and p(0)𝑣 = e𝑣 .
We then obtain a refined item embedding as follows,

p̂𝑖 =
1

𝐻 + 1

𝐻∑︁
ℎ=0

p(ℎ)
𝑖

. (17)
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4.2.3 Information Propagation for the Context. For the contextual
features, as shown in the lower left corner of Fig. 3, the user and
item information will be propagated to intent nodes first, and then
different contextual features will distribute the information accord-
ing to the contextual attention distribution,

p(ℎ)
𝑡𝑘 ,𝑘

= p(ℎ−1)
𝑢𝑘

+ p(ℎ−1)
𝑖𝑘

. (18)

p(ℎ)
𝑐𝑘𝑧 ,𝑘

= 𝛾𝑘𝑧 p
(ℎ)
𝑡𝑘 ,𝑘

. (19)

Finally, we can get the embedding of the contextual features at
layer ℎ and the final refined embedding as follows,

p(ℎ)𝑐𝑧 =
1√︃

|{𝑘 |𝑐𝑘𝑧 = 𝑐𝑧 }|

∑︁
𝑘,𝑐𝑘𝑧 =𝑐𝑧

p(ℎ)
𝑐𝑘𝑧 ,𝑘

. (20)

p̂𝑐𝑧 =
1

𝐻 + 1

𝐻∑︁
ℎ=0

p(ℎ)𝑐𝑧 . (21)

Note that since the contextual features are only related to contex-
tual intent, information propagation only uses sub-intent nodes
obtained by contextual intent attention instead of enhanced intent
nodes. In addition, since the calculation of Eq.(12) and Eq.(15) in
the next layer requires contextual intent at layer ℎ, it needs to feed
the information back to the sub-intent nodes,

p(ℎ)
𝑡𝑘

=
∑︁

𝛾𝑘𝑧 p
(ℎ)
𝑐𝑘𝑧

. (22)

4.2.4 Information Propagation for the Entity. As shown in the lower
right corner of Fig. 3, the information propagation of entities only
involves the items and relations, which can be expressed as,

p̂(ℎ)𝑣 =
1

|N𝑣 |
∑︁

(𝑟,𝑖 ) ∈N𝑣

e𝑟 ⊙ p(ℎ−1)
𝑖

, (23)

whereN𝑣 denotes the set of relations and items associated with en-
tity 𝑣 . Comparing with Eq.(2), after performing pairwise intent joint
graph convolution, we can obtain a set of corresponding refined
embeddings, and can integrate them into arbitrary CARS models
in place of randomly initialized embeddings.

Ps𝑘 = [p̂𝑢𝑘 , p̂𝑖𝑘 , p̂C𝑘 ] . (24)

4.3 Complexity Analysis
In this subsection, we analyze the time complexity of our PING.
Since the refined embeddings can be obtained in offline training and
directly used for online inference, the tolerance for time complexity
will be greater. The time complexity of our PING in this case is
the same as that of the base model. For model training, the main
cost of our PING is on the pairwise intent joint graph convolution,
and its complexity is O(𝑍 · |G𝑝𝑖𝑔 | · 𝑑), where |G𝑝𝑖𝑔 | denotes the
number of edges in G𝑝𝑖𝑔 . Compared to representative graph-based
context-aware methods, the additional complexity is linear with
the number of connections between entities, relations, and items.
Typically, the number of these connections is much smaller than
the connections between users, items, and contexts, which means
that our PING has comparable complexity to the baselines.

5 EMPIRICAL EVALUATIONS
In this section, we conduct experiments with the aim of answering
the following six key questions. Note that the source codes are
available at https://github.com/dgliu/RecSys23_PING.

• RQ1: How does our PING perform compared to the baselines?
• RQ2: What is the role of each module in our PING?
• RQ3: What are the characteristics of intent attention obtained
in our PING?

• RQ4: How does our PING perform on the two challenges of
CARS, i.e., interaction sparsity and feature sparsity?

• RQ5: How is the compatibility of our PING?
• RQ6: What is the impact of the hyperparameters in our PING
on performance?

5.1 Experimental Setup
5.1.1 Datasets. To evaluate the effectiveness of the proposed frame-
work, we need to use public datasets with KG in our experiments.
Following the settings of previous works [7, 25, 26], we conduct
experiments on three public datasets including Amazon-book1,
Yelp20182 and Last-FM3.

• Amazon-book is a subset corresponding to the book product
category in the Amazon dataset. In this dataset, a large number
of ratings and comments from the users on book products are
provided, and each book product can be linked to an external
knowledge graph to obtain additional knowledge.

• Yelp2018 is the 2018 edition of the Yelp Challenge dataset. It
provides extensive records of user interactions with local busi-
nesses, such as restaurants and bars, in metropolitan areas of
different countries. Furthermore, additional item knowledge can
be extracted as KG data, such as category, location, and attribute,
through the attached local business information network.

• Last-FM is a music listening dataset collected from the Last.fm
online music platform, where each interaction can be expressed
as (𝑢𝑠𝑒𝑟_𝑖𝑑, 𝑎𝑟𝑡𝑖𝑠𝑡_𝑖𝑑, 𝑎𝑙𝑏𝑢𝑚_𝑖𝑑, 𝑡𝑟𝑎𝑐𝑘_𝑖𝑑, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝). Here we
view the tracks as the items. Similarly, by mapping each track
with an external knowledge graph, we can obtain their corre-
sponding additional item knowledge.

5.1.2 Dataset Preprocessing. For the acquisition of the item KG
corresponding to each dataset, we follow previous work [25] and
use the open-source data they provide4. Please refer to the original
paper for more information on the knowledge-mapping process.
Similarly, to construct the corresponding contextual features for
each dataset, we follow the setting of previous work [15]. Specifi-
cally, for the Yelp2018 dataset, there are four kinds of context, i.e.,
𝑐𝑖𝑡𝑦, 𝑦𝑒𝑎𝑟 ,𝑚𝑜𝑛𝑡ℎ, and 𝑑𝑎𝑦_𝑜 𝑓 _𝑤𝑒𝑒𝑘 (DoW). In the Amazon-book
dataset and the Last-FM dataset, the contextual features include
𝑦𝑒𝑎𝑟 ,𝑚𝑜𝑛𝑡ℎ, 𝑑𝑎𝑦, and 𝑑𝑎𝑦_𝑜 𝑓 _𝑤𝑒𝑒𝑘 . We use the same data parti-
tion as in previous studies [25, 26], i.e., 70% for training, 10% for
validation, and the rest 20% for test. We summarize the statistics of
the three processed datasets in Table 1.

1http://jmcauley.ucsd.edu/data/amazon/
2https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset/versions/8
3http://www.cp.jku.at/datasets/LFM-1b/
4https://github.com/xiangwang1223/knowledge_graph_attention_network
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Table 1: Statistics of the processed datasets.

Amazon-book Yelp2018 Last-FM

User-Item
Interaction

#Users 70,679 23,566 45,919
#Items 24,915 48,123 45,538
#Interactions 847,733 3,034,796 1,185,068
#Contextual Feature 59 535 133

Knowledge
Graph

#Entities 88,572 58,266 90,961
#Relations 39 9 42
#Triplets 2,557,746 464,567 1,853,704

5.1.3 Baselines. We select the representative methods from the
two related research topics summarized in Sec. 2, including context-
aware methods (FM, GCM, and UEG), knowledge graph (KG)-based
methods (CKE, KGNN-LS, CKAN, KGAT, KGIN, and HAKG), and
KG-free method (MF).

• MF [12]: This is one of the most classical recommendation meth-
ods, which only considers user-item interactions without knowl-
edge graph. Here, we use ID embeddings of users and items to
perform the prediction.

• FM [19]: This is one of the most classical context-aware methods,
which considers the second-order feature interactions among
input features. Here, We consider a user ID, an item ID, and the
contextual features as input features.

• CKE [34]: This is an embedding-based knowledge graph uti-
lization method, which uses semantic embeddings derived from
TransR [14] to enhance the MF framework.

• KGNN-LS [24]: This is a propagation-based knowledge graph
utilization method, which converts knowledge graphs into user-
specific graphs, and then introduces user preferences and label
smoothness in the information aggregation stage to generate
personalized item embeddings.

• CKAN [28]: This method is based on KGNN-LS and introduces
different aggregation schemes on the user-item graph and knowl-
edge graphs to better encode the embeddings.

• KGAT [25]: This is a propagation-based knowledge graph utiliza-
tionmethod, which combines the user-item graph and knowledge
graphs and introduces a unified attention aggregationmechanism
to obtain better user and item embeddings.

• KGIN [26]: This is a state-of-the-art propagation-based knowl-
edge graph utilization method, which models the intents behind
user behaviors and designs a new relation-aware information
aggregation mechanism to capture long-range connectivity in
knowledge graphs.

• HAKG [7]: This is a state-of-the-art hyperbolic-based knowledge
graph utilizationmethod, which designs a hyperbolic aggregation
scheme to collect the relational context over knowledge graphs
and introduces an angle constraint and a dual item embeddings
design to better capture the high-order collaborative signals of
the items.

• GCM [29]: This is a state-of-the-art context-awaremethod, which
proposes an attributed user-item bipartite graph that treats con-
textual features as edge attributes and designs a new convolution
method to fully explore the information of this graph structure.

• UEG [15]: This is a state-of-the-art context-aware method, which
models the user’s intentions for contextual features to generate

a user-event graph structure, and proposes a corresponding con-
volution method to propagate information between users, items,
and contexts effectively.

5.1.4 Evaluation Metrics. We evaluate the recommendation per-
formance via two widely used ranking-oriented metrics, i.e., recall
(R@𝑘) and normalized discounted cumulative gain (N@𝑘). We re-
port the average metrics for all users in the testing set, where 𝑘 is
set to 20 [7, 25, 26]. The candidate items to be recommended for a
user are from the set of items that have not been interacted with
by the user.

5.1.5 Implementation Details. We implement our PING in Ten-
sorFlow 1.15. For the adopted baselines, we use the open-source
implementations and parameter settings provided by previous stud-
ies [7, 15, 25, 26, 29], where the embedding size is set to 64, the
batch size is set to 1024, Adam is used as the optimizer, and the
learning rates for the context-aware baselines and the knowledge
graph-based baselines are set to 0.001 and 0.0001, respectively. For
our method, our search scope includes the number of GNN layers
𝐻 in the range of {1, 2, 3}, the regularization weight 𝛾 in the range
of {1𝑒−1, 1𝑒−2, 1𝑒−3, 1𝑒−4, 1𝑒−5}, and the number of relational in-
tents |P | in the range of {1, 2, 4, 8}. The other parameters remained
the same as the baselines. We perform a grid search to tune the
hyper-parameters by evaluating the summation of R@20 and N@20.
In addition, we also adopted an early stopping strategy with the
patience set to 10 times to avoid over-fitting to the training set.

5.2 RQ1: Performance Comparison
We report the comparison results in Table 2. Note that to further
illustrate the key role of contextual features in the context-aware
recommendation, we also evaluate the performance of context-
aware baselines without using contextual features for prediction
i.e., GCM (w/o c) and UEG (w/o c). From the results in Table 2, we
can have the following observations: 1) Knowledge graph-based
baselines can benefit from the semantic information provided by
knowledge graphs to better model user and item embeddings, and
achieve better performance than MF; 2) Context-aware baselines
have better performance than the above two, which indicates the
crucial role of contextual features in CARS. Conversely, when con-
textual features are not available at the prediction stage, the per-
formance of these methods suffers greatly, i.e., GCM (w/o c) and
UEG (w/o c); 3) UEG performs the best among the baselines by
modeling the intent behind contextual features and constructing
a user-event graph with the intent nodes as the hub connecting
users, items, and contexts. This means that effectively capturing the
intent behind user interactions and considering a reasonable graph
structure adapted to CARS can contribute a better performance;
and 4) Our PING consistently outperforms all the baselines. This
demonstrates the effectiveness of the proposed user intent fusion
(UIF) and pairwise intent graph. In particular, our PING inherits
and improves all the above beneficial observations. Specifically,
UIF can combine knowledge graphs to capture more fine-grained
user intent, and the proposed pairwise intent graph can rationally
and effectively utilize knowledge graphs to further enhance the
learning of user, item, and contextual embeddings.
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Table 2: Results on all datasets, where the best and second
best results are marked in bold and underlined, respectively.
Note that ∗ indicates a significance level of 𝑝 ≤ 0.05 based on a
two-sample t-test between our method and the best baseline.

Dataset Amazon-book Yelp2018 Last-FM
Metrics R@20 N@20 R@20 N@20 R@20 N@20
MF 0.1300 0.0678 0.0627 0.0413 0.0724 0.0617
CKE 0.1342 0.0698 0.0653 0.0423 0.0732 0.0630

KGNN-LS 0.1362 0.0560 0.0671 0.0422 0.0880 0.0642
CKAN 0.1442 0.0698 0.0646 0.0441 0.0812 0.0660
KGAT 0.1487 0.0799 0.0705 0.0463 0.0873 0.0744
KGIN 0.1687 0.0915 0.0698 0.0451 0.0978 0.0848
HAKG 0.1421 0.0863 0.0778 0.0501 0.1008 0.0931
FM 0.1565 0.0793 0.1186 0.0550 0.1084 0.0433

GCM (w/o c) 0.1371 0.0618 0.0761 0.0309 0.0839 0.0387
GCM 0.1863 0.0919 0.1285 0.0556 0.1088 0.0496

UEG (w/o c) 0.1399 0.0623 0.0765 0.0317 0.0747 0.0346
UEG 0.2872 0.1583 0.1352 0.0613 0.0940 0.0441
PING 0.3043∗ 0.1759∗ 0.2132∗ 0.1336∗ 0.1752∗ 0.1014∗

5.3 RQ2: Ablation Study of PING
To analyze the contribution of user intent fusion (UIF) and each
sub-intent in our PING, we conduct an ablation study and report the
results in Table 3. We evaluate the performance of our PING when
user intent fusion (UIF) excludes relational intent (denoted as ‘w/o
RI’), excludes contextual intent (denoted as ‘w/o CI’), and excludes
the both (denoted ‘w/o RI&CI’), respectively. From the results in
Table 3, we have the following observations: 1) ‘w/o RI&CI’ vs.
‘w/o RI’, ‘w/o CI’. The variant that removes either sub-intent in
user intent fusion beats the variant that removes both sub-intents.
This means that the introduction of user intent is beneficial for the
context-aware recommendation, whether relational intent driven
by knowledge graphs or contextual intent driven by contextual
features, and this is also consistent with the observations in Table 2.
2) ‘w/o RI’ vs. ‘w/o CI’. The variant removing relational intent
outperforms the variant removing contextual intent in user intent
fusion, indicating that contextual intent brings more gain than
relational intent in the context-aware recommendation. This is
expected, since the learning of contextual features plays a key role
in contextual recommendation, and contextual intent is closely
related to them. 3) PING vs. ‘w/o RI’, ‘w/o CI’. Our PING achieves
the best performance, which demonstrates the effectiveness of the
proposed user intent fusion. In particular, the proposed user intent
fusion can make the two sub-intents synergistic, and enable our
PING to further enhance the high-order information propagation
and collaboration between the users, items, and context nodes
through enhanced intent nodes.

Table 3: Results of the ablation studies on all datasets, where
the best results are marked in bold.

Dataset Amazon-book Yelp2018 Last-FM
Metrics R@20 N@20 R@20 N@20 R@20 N@20
PING 0.3043 0.1759 0.2132 0.1336 0.1752 0.1014
w/o RI 0.2714 0.1546 0.1677 0.0886 0.1459 0.0731
w/o CI 0.2537 0.1254 0.1521 0.0715 0.1439 0.0673

w/o RI&CI 0.1863 0.0919 0.1285 0.0556 0.1088 0.0496

5.4 RQ3&RQ4: In-depth Analysis of PING
Since relational intent and contextual intent are potentially benefi-
cial to improve the interpretability of the framework, we are curious
about the characteristics of the different attention weights obtained
by our PING. We show the relational intent and contextual intent
corresponding to two instances on Amazon-book and Yelp2018 in
Fig. 4, respectively. We can observe that contextual intent captures
the focus of different users, i.e. the user 16591 on Amazon-book is
susceptible to the previous interaction, and the user 114 on Yelp2018
focuses more on location. We can also observe similar results on
relational intentions, for example, the user 114 on Yelp2018 is more
concerned with aspects that reflect the quality of the restaurant,
such as table service and star rating.

To analyze whether our PING can effectively alleviate the two
problems of feature sparsity and interaction sparsity, we conduct
three studies about GCM, UEG, and our PING on Amazon-book.
Specifically, we first count the number of contextual features as-
sociated with each user and each item, and the frequency of each
contextual feature, respectively. Then, according to the obtained
statistical results, we group all users, items, and contexts, respec-
tively, and calculate the average result within each group in turn.
The results are shown in Fig. 5(a), 5(b) and 5(c). We can observe
that our PING has a significant improvement in all groups. The
above results show that our PING can not only effectively alleviate
these two key challenges in CARS, but also further enhance the
learning of embeddings for the remaining groups of users, items,
and contexts.

5.5 RQ5: Compatibility Evaluation of PING
To verify the compatibility of our PING for various downstream
recommendation models, we evaluate the performance of our PING
combined with three typical recommendation models, i.e., MF, FM,
and MLP. For a more comprehensive comparison, we also evaluate
the compatibility of the two most relevant context-aware baselines,
i.e., GCM and UEG. The results are shown in Fig. 6. We can find that
our PING consistently outperforms the base downstream recom-
mendation model (i.e., using randomized initial embedding vectors
instead of refined ones), GCM, and UEG in all the cases. This shows
that in practice, our PING can be used as a general preprocessing
framework to provide the refined embedding vectors for different
downstream recommendation models, thereby improving their rec-
ommendation performance. Compared with GCM and UEG, the
proposed pairwise intent graph can effectively combine knowledge
graph and contextual features to form pair-aware intent nodes for
capturing more fine-grained user intent. This enables the proposed
joint graph convolution based on this graph structure to obtain the
refined embedding vectors that are more beneficial to downstream
recommendation models. In particular, UEG only models coarse-
grained user intent based on contextual features, which cannot
maintain good performance in some cases (such as on Last-FM),
and our PING has a steady performance improvement in all the
cases. An interesting observation is that FM as a downstream rec-
ommendation model has a more stable performance in most cases,
which may be an important reason why FM and its variants are so
popular in CARS. Furthermore, this advantage is further amplified
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Figure 4: Explanations of user intents and real cases in Amazon-Book (left) and Yelp2018 (right). Best viewed in color.
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Figure 5: Recommendation performance of our PING with different user-context (u-c) interaction levels, item-context (i-c)
interaction levels, and context frequencies on Amazon-book.

after obtaining refined features with better expressive power for
all the features.

5.6 RQ6: Parameter Sensitivity Analysis of
PING

In this section, we conduct experiments on some key hyperparam-
eters to analyze the results of our PING under different parameter
values, including the number of convolutional layers, regularization
weight, and the number of shared intent.

5.6.1 Impact of the Number of Layers. Since the number of convolu-
tional layers directly affects the high-order information propagation
between the users, items, and context nodes, it obviously has an im-
pact on the performance of our PING. We consider the cases where
the number of layers is set to 1, 2, and 3 respectively, and report
the corresponding results in Table 4. As shown in Table 4, when
the number of layers is 2, our PING achieves the best results on all
the datasets. In particular, when the number of layers takes a large
value, the performance may be degraded due to the introduction of
too much useless information.

Table 4: Impact of the number of layers 𝐻 , where the best
results are marked in bold.

Dataset Amazon-book Yelp2018 Last-FM
Metrics R@20 N@20 R@20 N@20 R@20 N@20
PING-1 0.2937 0.1621 0.1905 0.1136 0.1636 0.0866
PING-2 0.3043 0.1759 0.2132 0.1336 0.1752 0.1014
PING-3 0.2032 0.1010 0.1038 0.0435 0.1267 0.0646

5.6.2 Impact of the Regularization Weight. We next consider the
effect of the weight of the parameter regularization term, where its
values are set to 1𝑒−1, 1𝑒−2, 1𝑒−3, 1𝑒−4, and 1𝑒−5, respectively. The
result is shown in Fig. 7. We can observe that when the regular-
ization weight takes a moderate value, our PING can have a better
result on all the datasets. On the contrary, if its value is set to larger
or smaller, it will cause damage to the performance of our PING.

5.6.3 Impact of the Number of Shared Intent. Since relational intent
is a key component in the proposed user intent fusion, which carries
the semantic information derived from the knowledge graph to
provide a finer-grained user intent, the number of shared intents it
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on the three datasets.
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Figure 7: Impact of the value of the regularization weight.
Best viewed in color.

contains clearly also has an impact on the performance of our PING.
We consider the cases where the number of shared intent is set to
1, 2, 4, and 8 respectively, and report the corresponding results in
Fig. 8. As shown in Fig. 8, when the value of |P | is set to 1, 2, and 4,
we can find that the performance of our PING gradually improves
as the number of shared intents increases. However, when |P | is
set to a larger value, our PING performance will drop significantly.
Therefore, it is important to choose a reasonable number of shared
intents in practice.
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Figure 8: Impact of the number of shared intent (|P |). Best
viewed in color.

6 CONCLUSIONS
In this paper, aiming at the underutilization of knowledge graphs for
the context-aware recommendation, we propose a pairwise intent
graph embedding learning (PING) framework to effectively utilize
knowledge graphs to enhance the high-order information collabora-
tion of users, items, and contexts. Our PING includes three modules,

i.e., a graph construction module for obtaining the pairwise intent
graph, a pairwise intent joint graph convolution module for refin-
ing the embeddings of all features, and a recommendation module
for applying the refined embeddings to improve recommendation
performance. Finally, we conduct extensive experiments on three
real-world datasets to verify the effectiveness and compatibility of
our PING.
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