
Transfer Learning in Collaborative Recommendation for Bias
Reduction

Zinan Lin
College of Computer Science and
Software Engineering, Shenzhen

University
Shenzhen, China

lzn87591@gmail.com

Dugang Liu
College of Computer Science and
Software Engineering, Shenzhen

University
Shenzhen, China

dugang.ldg@gmail.com

Weike Pan∗
Zhong Ming∗

Shenzhen University
Shenzhen, China

panweike,mingz@szu.edu.cn

ABSTRACT
In a recommender system, a user’s interaction is often biased by
the items’ displaying positions and popularity, as well as the user’s
self-selection. Most existing recommendation models are built us-
ing such a biased user-system interaction data. In this paper, we
first additionally introduce a specially collected unbiased data and
then propose a novel transfer learning solution, i.e., transfer via
joint reconstruction (TJR), to achieve knowledge transfer and shar-
ing between the biased data and unbiased data. Specifically, in our
TJR, we refine the prediction via the latent features containing
bias information in order to obtain a more accurate and unbiased
prediction. Moreover, we integrate the two data by reconstructing
their interaction in a joint learning manner. We then adopt three
representative methods as the backbone models of our TJR and
conduct extensive empirical studies on two public datasets, show-
casing the effectiveness of our transfer learning solution over some
very competitive baselines.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Transfer Learning, Collaborative Recommendation, Bias Reduction,
Unbiased Data
ACM Reference Format:
Zinan Lin, Dugang Liu,Weike Pan, and ZhongMing. 2021. Transfer Learning
in Collaborative Recommendation for Bias Reduction. In Fifteenth ACM
Conference on Recommender Systems (RecSys ’21), September 27-October 1,
2021, Amsterdam, Netherlands. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3460231.3478860

1 INTORDUCTION
In a typical closed-loop recommender system, a user’s feedback or
interaction is often influenced by the items’ displaying positions
and popularity, etc, which means that the collected data are biased
[15, 16]. Most current collaborative recommendation models are
∗co-corresponding authors

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8458-2/21/09.
https://doi.org/10.1145/3460231.3478860

built with the biased data only, which may not suit the users’ tastes
well. In this paper, we turn to leverage an additional unbiased data
for users’ preference learning, which is thus called collaborative
recommendation with biased and unbiased data.

For the studied recommendation problem with both biased and
unbiased data, previous works show that the unbiased data has
the potential to mitigate the bias in users’ feedback [8, 10, 16].
However, the unbiased data is usually rather small due to the high
expensiveness of collection in a deployed online system, which
makes it difficult to help reduce the bias in the relatively big biased
data. Some researchers have made some pioneering efforts in this
direction, including proposing a domain adaptation algorithm [1],
developing a knowledge-distillation framework [8], and designing
a meta learning algorithm [2], etc. However, these methods do
not fully consider the difference between the biased and unbiased
data in the generation process, which may not address the bias
challenge in the biased data and the heterogeneity challenge of the
two different data well.

As a response, in this paper, we propose a novel transfer learning
solution called transfer via joint reconstruction (TJR). Specifically,
we first convert the modeling of the biased and unbiased data into
a transfer learning problem, where the big biased data is taken as
the auxiliary data and the small unbiased data is taken as the target
data. We extract the latent features that represent users’ preferences
and bias information from two different data. Intuitively, regardless
of what the latent features represent, they ultimately affect the
prediction of the model. Therefore, we refine the prediction by
the latent features containing bias information to obtain a more
accurate and unbiased prediction, which thus alleviates the bias
problem. In order to effectively achieve knowledge transfer between
the auxiliary data and the target data for bias reduction, we propose
a joint reconstruction loss, aiming to guide the reconstructed output
to fit both the target data and auxiliary data well. In this way, the
unbiased target data implicitly plays a role of high-quality data that
guides the learning task of the biased data, which addresses both
the bias challenge and the heterogeneity challenge.

2 RELATEDWORK
2.1 Collaborative Recommendation
In collaborative recommendation for a user u, we aim to find the
most relevant or interested items from a candidate pool, which is
usually achieved by learning a preference score between a user u
and each item i , i.e., r̂ui . In order to estimate r̂ui , we may use a
neighborhood-based method [3], a factorization-based method [5,
12] or a deep network based method [4, 7]. A neighborhood-based

736

https://doi.org/10.1145/3460231.3478860
https://doi.org/10.1145/3460231.3478860
https://doi.org/10.1145/3460231.3478860
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460231.3478860&domain=pdf&date_stamp=2021-09-13

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Lin, et al.

method first calculates the similarities among the users (or items)
and then predicts the preference r̂ui by aggregating the preferences
of the neighbors of useru to item i (or the preferences of useru to the
neighbors of item i). A factorization-based method often factorizes
the user-item interaction matrix to learn the latent representations
of the users and items. A deep neural network based method is able
to capture the non-linear interaction between the latent features of
users and items.

2.2 Bias Reduction in Collaborative Filtering
In recent years, the bias problem in collaborative recommendation
has gradually received more attention by the researchers and prac-
titioners from the academia and industry. Existing works for bias
reduction can be categorized into three classes, including counter-
factual learning-based methods [14, 15, 17], heuristic-based meth-
ods [9] and unbiased data augmentation methods [1, 2, 8]. One of
the most popular counterfactual learning-based methods is inverse
propensity score (IPS) [6], where each sample is assigned a weight
via a theoretically unbiased prediction model. Heuristic-based meth-
ods are relatively few, which often make certain assumptions about
the data being missing not at random. The data augmentation
methods alleviate the bias problem by introducing an unbiased data
collected by a specific random policy, which is recognized as a very
promising approach.

Our TJR aims to transfer knowledge between a biased data and
an unbiased data for joint preference modeling, and reduce the bias
via a specially designed prediction refinement component.

3 OUR SOLUTION: TRANSFER VIA JOINT
RECONSTRUCTION

3.1 Problem Definition
In our studied problem of collaborative recommendation with bi-
ased and unbiased data, we have a set of users and a set of items,
denoted by U = {u} = {1, 2, ...,n} and I = {i} = {1, 2, ...,m},
respectively. Moreover, we have two different sets of user-item
interaction feedback, i.e., SA = {(u, i)} and ST = {(u, i)} obtained
by two different policies. Specifically, SA is a big and biased data
collected by a commonly deployed non-uniform policy in a typical
online recommender system and ST is a small and unbiased data
collected by a specially designed uniform (i.e., random) policy. Our
goal is then to reduce the bias in SA and provide a more accurate
personalized recommendation list of items for each user.

3.2 Our Solution: Transfer via Joint
Reconstruction

We study the problem from the perspective of transfer learning [13].
We regard SA and ST as the auxiliary data and the target data,
respectively. From the idea of latent variable model, we can learn
users’ latent features from SA via sufficient training. However, due
to the existence of bias, these latent features are mixed with features
containing bias information. Meanwhile, we can not obtain users’
unbiased latent features well from ST because its scale is often too
small.

In order to make full use of the information in SA and ST , we
propose a novel transfer learning solution, i.e., transfer via joint

reconstruction (TJR), which is illustrated in Figure 1. Intuitively,
the learned latent features, whether they represent users’ prefer-
ences or bias information, ultimately affect the prediction of the
model. Therefore, we use two different models to extract the latent
features that represent users’ preferences and bias information,
and then refine the prediction in a linear manner to alleviate bias
problem.

Figure 1: Illustration of our transfer via joint reconstruction
(TJR). We extract the corresponding information from two
different data. F C(·) is used to extract confusing latent fea-
tures zCu that contain both user preferences and bias infor-
mation, and both FA(·) and TA(·) are used to extract latent
features zAu about bias information. Based on zCu , zAu andG(·),
we can get the unbiased prediction ŷidealu . Notice that G(·)
is shared and the arcs denote the loss functions to be min-
imized simultaneously, i.e., reconstructing both biased and
unbiased data, to achieve the effect of joint reconstruction.

Specifically, we use the union of SA and ST to obtain the con-
fusing latent features zCu that contain user preferences and bias
information through the function for latent feature extraction, i.e.,
F C(·). After getting zCu , we use G(·) to get the prediction ŷC

u . No-
tice that ŷC

u is usually biased. In particular, if we use VAE as the
backbone model, F C(·) refers to the encoder and G(·) refers to the
decoder.

We use SA to extract latent features of bias information z̃Au
through FA(·) and TA(·). Notice that FA(·) is the same as F C(·)
in structure andTA(·) is a transform function. The reason for intro-
ducing the transform function is that the latent features of bias are
usually non-linear and high-dimensional. We use sigmoid as the
default transform function in our TJR and also study the impact
of different ones on the recommendation performance. After ob-
taining z̃Au , we useG(·) to get the prediction ŷA

u . Notice thatG(·) in
the bottom branch is shared with the the one in the upper branch
that generates ŷC

u . The reason is that G(·) serves to map the values
in the latent feature space to the label space, and the mapping re-
lationship is theoretically unchanging regardless of whether the
latent features are biased or unbiased.

To obtain an unbiased prediction ŷidealu , we intuitively use a
linear method through ŷC

u and ŷA
u , i.e., ŷidealu = ŷC

u − ŷA
u . Finally,

in order to train our TJR, we naturally design a joint reconstruc-
tion loss function, i.e., reconstructing both the biased and unbi-
ased data. For user u, we can easily obtain the loss function, i.e.,
αL(ŷidealu ,yA

u) + L(ŷidealu ,yT
u), where L(·, ·) denotes an arbitrary

loss function such as the cross-entropy loss. Notice that we follow
the idea of theWeight strategy [8] and introduce a hyper-parameter
α in the above loss function. To learn the biased features zCu better,
we introduce an additional loss function, i.e., L(ŷC

u ,y
A
u). Finally, we

737

TJR RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

have the overall loss function of our TJR,

LTJR =αL(ŷidealu ,yA
u) + L(ŷidealu ,yT

u) + γL(ŷC
u ,y

A
u), (1)

where α and γ are the hyper-parameters,yA
u are the observed labels

from SA
u (SA

u ⊆ SA) and yT
u from ST

u (ST
u ⊆ ST).

4 EXPERIMENTS
4.1 Experimental Setup
Datesets. For the studied problem of collaborative recommenda-
tion with biased data and unbiased data, there are only two public
datasets available, i.e., Yahoo! R3 [11] and Coat Shopping [15],
which are thus both included in our experiments. Yahoo! R3 is a
(user, song) rating data with a biased user subset and an unbiased
random subset, involving 15400 users and 1000 songs. The user
subset is biased, collected under a common recommendation pol-
icy and the random subset is an unbiased data, collected under
a uniform policy. We follow a previous work [8], and regard the
ratings larger than 3 as positive feedback. In addition, we regard
the biased user subset as the auxiliary data (SA) and randomly
split the unbiased random subset into three subsets: 10% as the
target data (ST) for training, 10% as the validation data (Sva) to
tune the hyper-parameters, and the rest 80% as the test data (Ste)
for performance evaluation. Coat Shopping is a (user, coat) rating
data collected from 290 Amazon Mechanical Turk (AMT) workers
on an inventory of 300 coats. Similar to Yahoo! R3, it contains
a biased user subset and an unbiased random subset. The pre-
processing and split of the two subsets are the same as that on
Yahoo! R3.
Metrics. For evaluation of collaborative recommendation, we adopt
twowidely usedmetrics in the community of recommender systems,
including the area under the ROC curve (AUC) and normalized
discounted cumulative gain (NDCG@50), where AUC is the main
metric.
Baselines.We use three representative methods as backbone mod-
els (BMs), i.e., variational autoencoders (VAE), matrix factorization
(MF) and neural collaborative filtering (NCF). Notice that for MF
and NCF, we use SA ∪ ST instead of SA for learning the bias in-
formation in order to avoid the situation when a sampled triple is
included in SA ∪ ST but not in SA , because the latent features are
learned by randomly sampling one single (user, item, rating) triple
rather than all the rating records of a user in VAE. Moreover, for
the unobserved (user, item) pairs, when VAE is used as the back-
bone model, we treat them as negative feedback, and when MF and
NCF are used as the backbone models, we treat them as missing
values.

Our TJR is closely relatedwith the backbonemodels, and thus use
BM(SA), BM(ST) and BM(SA ∪ ST) to denote the used data sources,
i.e., training only with SA , training only with ST , and training with
both SA and ST , respectively, where BM is a specific backbone
model. We also compare the representative methods proposed in
recent years, including inverse propensity score (IPS) [15] and
CausE [1], as well as the Bridge and Weight strategies [8]. For IPS,
since we use implicit feedback instead of ratings, we estimate the
propensity score w.r.t. an item i via the naive Bayes estimator that
considers the exposure of the item [6, 14]. In addition, a model
called AutoDebias has recently been proposed [2], which is also

included as one of the baselines. However, AutoDebias only uses
matrix factorization as the backbone model, and it is difficult to
be extended to VAE and NCF. Hence, we do not compare with
AutoDebias using VAE or NCF as the backbone model.
Reproducibility. For AutoDebias-MF, we implement it via
PyTorch 1.1 using the MSE loss and parameter configurations
following the original paper [2]. For all the other methods, we
implement them via TensorFlow 1.2 using the cross-entropy loss
and batch training. We conduct a grid search to tune the hyper-
parameters of all the methods by checking the AUC performance on
the validation data Sva . Specifically, we choose the embedding size
rank ∈ {50, 100, 200}, the hyper-parameter on the regularization
term λ ∈ {1e−5, 1e−4, . . . , 1}, and the tradeoff hyper-parameters
α ∈ {0.1, 0.2, . . . , 1.0} andγ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}.
For the methods using VAE as the backbone model, we use RM-
SProp as the optimizer (the learning rate is fixed as 0.0001), set the
weight on the KL divergence as 0.2, fix the iteration number as 300,
and choose the dropout rate from {0.2, 0.3, 0.4, 0.5}. For the meth-
ods using MF (except AutoDebias-MF) and NCF as the backbone
models, we use Adam as the optimizer (the learning rate is fixed as
0.001), and set the iteration number as 100. Notice that we adopt
an early stopping strategy with the patience set to 5 times for the
methods using NCF as the backbone model. In addition, due to the
relatively small size of the validation data, the selection of the opti-
mal values is not always very stable. Therefore, we run ten times,
and then select the one with the best average performance. Notice
that the source code and scripts to reproduce all the results are pub-
licly available at https://csse.szu.edu.cn/staff/panwk/publications/
TJR/.

4.2 RQ1: Performance Comparison
We report the main results in Table 1, from which we can have
the following observations: (i) Overall, our TJR outperforms all
the baselines on both datasets, which clearly shows the advantage
of our transfer learning solution in jointly modeling the biased
and unbiased data. Notice that we take AUC as the main metric
and use it in the process of tuning the hyper-parameters. The loss
function of our TJR is similar to that of the Weight strategy [8], but
the performance of our model are better, which further illustrates
the validity of our TJR. (ii) Our TJR is flexible and could be easily
extended to different backbone models such as MF, VAE and NCF.
(iii) The performance of both CausE and the Bridge strategy are
limited by the pre-trainedmodel obtained by ST , and are also limited
by the scale of ST . Notice that our TJR jointly reconstructs SA and ST ,
which alleviates the problem of small size of ST to a certain extent.
(iv) In the experiments with matrix factorization as the backbone
model, the performance of our TJR is worse than AutoDebias on
NDCG@50 on Yahoo! R3. We analyse the prediction of AutoDebias
and our TJR-MF, and find that the hits of the two models are not
very different and most users’ hits are 0s as shown in Figure 2,
which is caused by the nature of the dataset. Specifically, in the test
set, the number of positive feedback of each user is rather small.
This situation is very different from most recommendation settings
on public biased datasets in previous works. Therefore, for bias
reduction, using NDCG as an evaluation metric may not be the best,
which may only be used as an auxiliary metric.

738

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Lin, et al.

Table 1: Recommendation performance on Yahoo! R3 and Coat Shopping, where the best results are marked in bold and the
second best results are marked in underline. Notice that we follow the original paper and only use matrix factorization as the
backbone model in AutoDebias, since it is more difficult to support other backbone models such as VAE and NCF.

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands Lin, et al.

Table 1. Recommendation performance on Yahoo! R3 and Coat Shopping, where the best results are marked in bold and the second
best results are marked in underline. Notice that we follow the original paper and only use matrix factorization as the backbone
model in AutoDebias, since it is more difficult to support other backbone models such as VAE and NCF.

Dataset Metrics VAE(𝑆A) VAE(𝑆T) VAE(𝑆A ∪ 𝑆T) IPS-VAE CausE-VAE Bridge-VAE Weight-VAE AutoDebias-VAE TJR-VAE

Yahoo! R3 AUC 0.7666 0.5770 0.7709 0.7470 0.7673 0.7711 0.7723 - 0.7804
NDCG@50 0.1009 0.0258 0.1014 0.0809 0.1013 0.1007 0.0998 - 0.1023

Coat Shopping AUC 0.6210 0.5413 0.6269 0.5757 0.6210 0.6210 0.6245 - 0.7603
NDCG@50 0.0921 0.0807 0.0952 0.0856 0.0922 0.0932 0.0949 - 0.1239

Dataset Metrics MF(𝑆A) MF(𝑆T) MF(𝑆A ∪ 𝑆T) IPS-MF CausE-MF Bridge-MF Weight-MF AutoDebias TJR-MF

Yahoo! R3 AUC 0.7329 0.5684 0.7409 0.7346 0.7285 0.7524 0.7465 0.7472 0.7696
NDCG@50 0.0382 0.0304 0.0439 0.0426 0.0445 0.0615 0.0494 0.0870 0.0705

Coat Shopping AUC 0.7606 0.5231 0.7631 0.7636 0.7611 0.7653 0.7636 0.6965 0.7646
NDCG@50 0.0990 0.0578 0.1016 0.0965 0.0985 0.1005 0.1012 0.0999 0.1027

Dataset Metrics NCF(𝑆A) NCF(𝑆T) NCF(𝑆A ∪ 𝑆T) IPS-NCF CausE-NCF Bridge-NCF Weight-NCF AutoDebias-NCF TJR-NCF

Yahoo! R3 AUC 0.7245 0.6050 0.7268 0.7273 0.7283 0.7367 0.7380 - 0.7420
NDCG@50 0.0279 0.0275 0.0327 0.0304 0.0284 0.0439 0.0383 - 0.0454

Coat Shopping AUC 0.7507 0.5840 0.7508 0.7337 0.7516 0.7522 0.7509 - 0.7537
NDCG@50 0.0976 0.0781 0.0969 0.0902 0.0961 0.0969 0.0946 - 0.0995

4.3 RQ2: Ablation Studies

In order to gain some deep understanding of our TJR, we use VAE as the backbone model and conduct some ablation
studies by removing some components from the framework of our TJR, and report the results in Figure 3(a-b). Firstly,
we cut off the sharing path of 𝐺 (·), denoted as “-Share”. We can see that sharing 𝐺 (·) can improve the performance of
our model because that could force the users’ latent feature space and the bias’s latent feature space to be as close as
possible, which is beneficial for our TJR to alleviate the bias problem from the same angle. In addition, we remove the
branch that extracts latent features of bias information so that our TJR degenerates into VAE(𝑆A ∪ 𝑆T), denoted as
“-Sub”. We can see that the recommendation performance of our TJR without the bias branch degrades significantly,
which shows the usefulness of the designed bias reduction component.

4.4 RQ3: Impact of the Transform Function

In this subsection, we again use VAE as the backbone model and further study the impact of the transform function
used to extract the bias information. Specifically, we report the the recommendation performance of our TJR with
different transform functions including sigmoid, tanh, relu and linear, which are shown in Figure 3(c-d). We can see that
using a nonlinear activation function improves the performance of our TJR more significantly than a linear one. Among
them, using the sigmoid function performs the best, followed by using tanh. The reason is related to the property of the
bias itself. Notice that the performance of a recommendation model largely depends on whether it learns the users’
interests or not, and the impact of bias on the performance is not very significant. In other words, the value of the bias
features could not be too large to ensure the overall performance of our TJR via the sigmoid function.

4.5 RQ4: Impact of the Hyper-Parameters

In this subsection, we use VAE as the backbone model and study the impact of the hyper-parameters 𝛼 and 𝛾 in our
TJR, and show the results in Figure 4. Specifically, we first fix 𝛾 as the optimal value, and report the recommendation
performance with different values of 𝛼 ∈ {0.1, 0.2, ..., 1.0}. We can see that the best values on Yahoo! R3 and Coat
Shopping are 0.2 and 0.6, respectively. The reason is that the ratio |𝑆A |/|𝑆T | of Yahoo! R3 is larger than that of Coat
Shopping. In order to reduce the effect of the loss on 𝑆A , 𝛼 shall be smaller. Similarly, we fix 𝛼 as the optimal value, and

6

(a) (b)

Figure 2: The percentage of hits of AutoDebias and our TJR-
MF (a), and the distribution of the number of users over the
number of favorite items in the test set (b), for Yahoo! R3.

4.3 RQ2: Ablation Studies
In order to gain some deep understanding of our TJR, we use VAE as
the backbonemodel and conduct some ablation studies by removing
some components from the framework of our TJR, and report the
results in Figure 3(a-b). Firstly, we cut off the sharing path of G(·),
denoted as “-Share”. We can see that sharing G(·) can improve
the performance of our model because that could force the users’
latent feature space and the bias’s latent feature space to be as close
as possible, which is beneficial for our TJR to alleviate the bias
problem from the same angle. In addition, we remove the branch
that extracts latent features of bias information so that our TJR
degenerates into VAE(SA ∪ ST), denoted as “-Sub”. We can see
that the recommendation performance of our TJR without the bias
branch degrades significantly, which shows the usefulness of the
designed bias reduction component.

4.4 RQ3: Impact of the Transform Function
In this subsection, we again use VAE as the backbone model and
further study the impact of the transform function used to extract
the bias information. Specifically, we report the the recommenda-
tion performance of our TJR with different transform functions
including sigmoid, tanh, relu and linear, which are shown in Fig-
ure 3(c-d). We can see that using a nonlinear activation function
improves the performance of our TJR more significantly than a

linear one. Among them, using the sigmoid function performs the
best, followed by using tanh. The reason is related to the property
of the bias itself. Notice that the performance of a recommendation
model largely depends on whether it learns the users’ interests or
not, and the impact of bias on the performance is not very signifi-
cant. In other words, the value of the bias features could not be too
large to ensure the overall performance of our TJR via the sigmoid
function.

4.5 RQ4: Impact of the Hyper-Parameters
In this subsection, we use VAE as the backbone model and study
the impact of the hyper-parameters α and γ in our TJR, and show
the results in Figure 4. Specifically, we first fix γ as the optimal
value, and report the recommendation performance with different
values of α ∈ {0.1, 0.2, ..., 1.0}. We can see that the best values on
Yahoo! R3 and Coat Shopping are 0.2 and 0.6, respectively. The
reason is that the ratio |SA |/|ST | of Yahoo! R3 is larger than that
of Coat Shopping. In order to reduce the effect of the loss on SA ,
α shall be smaller. Similarly, we fix α as the optimal value, and
report the recommendation performance with different values of
γ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}. We can see that the best
values on Yahoo! R3 and Coat Shopping are both 0.5. For user u,
L(ŷC

u ,y
A
u) is used to learn the biased features zCu better and the role

of γ is to control the its proportion. Ifγ is too small, the users’ latent
features may not be fully trained, and if γ is too large, the effect of
the bias branch in TJR will be weakened.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we study an emerging and important problem called
collaborative recommendation with a big biased data and a small
unbiased data. As a response, we view this problem from a transfer
learning perspective, and propose a novel transfer learning solu-
tion to achieve knowledge transfer between the two different data,
aiming to reduce the bias and improve the recommendation per-
formance. Specifically, we design an end-to-end transfer learning
framework, including two different but related models to extract la-
tent features that represent users’ preferences and bias information,

739

TJR RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

(a) Yahoo! R3 (b) Coat (c) Yahoo! R3 (d) Coat

Figure 3: Recommendation performance of our TJR by removing different components (i.e., “-Share” and “-Sub”), and using
different transform functions (i.e., sigmoid, tanh, relu and linear), which are shown in (a-b) and (c-d), respectively. Notice that
“-Share” and “-Sub” denotes removing the sharing path of G(·) and removing the branch used to extract the bias information,
respectively.

(a) Yahoo! R3 (b) Coat Shopping (c) Yahoo! R3 (d) Coat Shopping

Figure 4: Recommendation performance of our TJR on Yahoo! R3 and Coat Shopping with different values of α ∈
{0.1, 0.2, ..., 1.0} and γ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0}, which are shown in (a-b) and (c-d), respectively.

a bias reduction component and a shared prediction model, opti-
mized by a joint reconstruction loss, which is thus called transfer
via joint reconstruction (TJR). We then conduct extensive empiri-
cal studies on two public datasets, and find that our TJR performs
significantly better than some very competitive baseline methods
in most cases.

For future works, we are interested in further generalizing our
transfer learning solution to include more information such as
temporal dynamics and item descriptions.

ACKNOWLEDGMENTS
We thank the support of National Natural Science Foundation of
China Nos. 61836005 and 61872249, and Shenzhen Basic Research
Fund No. JCYJ20200813091134001.

REFERENCES
[1] Stephen Bonner and Flavian Vasile. 2018. Causal embeddings for recommendation.

In Proceedings of the 12th ACM Conference on Recommender Systems. 104–112.
[2] Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli

Lin, and Keping Yang. 2021. AutoDebias: Learning to debias for recommendation.
arXiv preprint arXiv:2105.04170 (2021).

[3] Mukund Deshpande and George Karypis. 2004. Item-based top-N recommenda-
tion algorithms. ACM Transactions on Information Systems 22, 1 (2004), 143–177.

[4] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web. 173–182.

[5] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[6] Dawen Liang, Laurent Charlin, and David M Blei. 2016. Causal inference for
recommendation. In Workshop on Causation: Foundation to Application co-located

with the 32nd Conference on Uncertainty in Artificial Intelligence.
[7] Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. 2018.

Variational autoencoders for collaborative filtering. In Proceedings of the 2018
World Wide Web Conference. 689–698.

[8] Dugang Liu, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Weike Pan, and
ZhongMing. 2020. A general knowledge distillation framework for counterfactual
recommendation via uniform data. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval. 831–840.

[9] Dugang Liu, Chen Lin, Zhilin Zhang, Yanghua Xiao, and Hanghang Tong. 2019.
Spiral of silence in recommender systems. In Proceedings of the 12th ACM Inter-
national Conference on Web Search and Data Mining. 222–230.

[10] David C Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C Ma,
Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related pins at pinterest:
The evolution of a real-world recommender system. In Proceedings of the 26th
International Conference on World Wide Web Companion. 583–592.

[11] Benjamin M Marlin and Richard S Zemel. 2009. Collaborative prediction and
ranking with non-random missing data. In Proceedings of the 3rd ACM Conference
on Recommender systems. 5–12.

[12] Andriy Mnih and Ruslan R Salakhutdinov. 2007. Probabilistic matrix factorization.
In Proceedings of the 21st International Conference on Neural Information Processing
Systems. 1257–1264.

[13] Sinno Jialin Pan and Qiang Yang. 2010. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering 22, 10 (2010), 1345–1359.

[14] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.
2020. Unbiased recommender learning from missing-not-at-random implicit
feedback. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 501–509.

[15] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations as treatments: Debiasing learning
and evaluation. arXiv preprint arXiv:1602.05352 (2016).

[16] Jiangxing Yu, Hong Zhu, Chih-Yao Chang, Xinhua Feng, Bowen Yuan, Xiuqiang
He, and Zhenhua Dong. 2020. Influence function for unbiased recommendation.
In Proceedings of the 43rd International ACM SIGIR Conference on Research and
Development in Information Retrieval. 1929–1932.

[17] Ziwei Zhu, Yun He, Yin Zhang, and James Caverlee. 2020. Unbiased implicit
recommendation and propensity estimation via combinational joint learning. In
Proceedings of the 14th ACM Conference on Recommender Systems. 551–556.

740

	Abstract
	1 Intorduction
	2 Related Work
	2.1 Collaborative Recommendation
	2.2 Bias Reduction in Collaborative Filtering

	3 Our Solution: Transfer via Joint Reconstruction
	3.1 Problem Definition
	3.2 Our Solution: Transfer via Joint Reconstruction

	4 Experiments
	4.1 Experimental Setup
	4.2 RQ1: Performance Comparison
	4.3 RQ2: Ablation Studies
	4.4 RQ3: Impact of the Transform Function
	4.5 RQ4: Impact of the Hyper-Parameters

	5 Conclusions and Future Work
	Acknowledgments
	References

