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ABSTRACT
How to effectively mitigate the bias of feedback in recommender

systems is an important research topic. In this paper, we first de-

scribe the generation process of the biased and unbiased feedback

in recommender systems via two respective causal diagrams, where

the difference between them can be regarded as the source of bias.

We then define this difference as a confounding bias, which can

be regarded as a collection of some specific biases that have pre-

viously been studied. For the case with biased feedback alone, we

derive the conditions that need to be satisfied to obtain a debiased

representation from the causal diagrams. Based on information

theory, we propose a novel method called debiased information bot-

tleneck (DIB) to optimize these conditions and then find a tractable

solution for it. In particular, the proposed method constrains the

model to learn a biased embedding vector with independent biased

and unbiased components in the training phase, and uses only the

unbiased component in the test phase to deliver more accurate

recommendations. Finally, we conduct extensive experiments on a

public dataset and a real product dataset to verify the effectiveness

of the proposed method and discuss its properties.
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1 INTRODUCTION
As a feedback loop system, a recommender system is associated

with various biases during the interaction between the user and

the system, such as position bias [3, 38], selection bias [27, 32] and

popularity bias [1, 6]. Ignoring these biases will cause a recommen-

dation model to converge to a biased sub-optimal solution, and

have harmful effects on the recommender system and the users,

such as filter bubbles [16], echo chambers [11] and unfairness [10].

Therefore, how to effectively alleviate the bias of the feedback data

collected in a recommender system is an important problem.

The previous works solving the bias problem in recommender

systems mainly include the following four lines, i.e., heuristic-based

methods [25, 43], inverse propensity score-based methods [32, 44,

45], unbiased data augmentation methods [5, 23, 39, 46], and some

theoretical tools-based methods [30, 31]. The first line assumes that

user feedback depends on certain specific factors and models this

relationship, such as item features [12, 20] and public opinions [22,

24]. The second line uses the inverse propensity score as the sample

weight to adjust the biased feedback distribution. The third line

introduces a special uniform data as an unbiased target data to

guide the training of the biased feedback. The last line aims to

couple certain theoretical tools with the bias problem, and uses

these theoretical tools to design some debiasing models, such as

information bottleneck and causal inference techniques [37, 40–42].

However, most methods ignore the bias generation process, and

thus may only be applicable to a certain type of bias problem.

In this paper, inspired by [13, 18], we first describe the generation

process of the biased feedback and unbiased feedback in recom-

mender systems via two respective causal diagrams, where the

difference between them can be regarded as the source of bias. We

define this difference as a confounding bias, which can be regarded

as a collection of some specific biases that have been studied in
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previous works. To simplify and match the main models in the rec-

ommendation field, we generally assume that the confounding bias

will be reflected in the embedding representation of a recommen-

dation model trained with a biased feedback data. Moreover, we

propose a debiased information bottleneck (DIB) objective function

to alleviate the confounding bias in the biased feedback without an

unbiased data.

Specifically, the proposed method is based on our observations in

the causal diagrams of the feedback generation process described

above. In the training phase, we constrain the model to learn a

special biased embedding vector, including a biased component re-

sponsible for the effect of the confounding bias, and an unbiased

component responsible for the effect of the user’s true preference.

To remove the influence of the confounding bias in the test phase,

we only retain the unbiased component in the embedding vector

in the process of recommending items, i.e., a debiased embedding
vector. The proposed method has better interpretability because it

is directly derived from the causal diagram of the bias generation

process. In addition, the proposed method can be used to solve a

more general bias problem because the confounding bias is essen-

tially a fusion of some specific biases. Finally, we conduct extensive

experiments on a public dataset and a real product dataset to ver-

ify the effectiveness of the proposed method, including standard

unbiased tests, ablation studies, and some in-depth analysis of the

proposed method.

2 RELATEDWORK
2.1 Debiasing in Recommender Systems
Solving the bias problem in recommender systems is an important

topic that has gradually received more attention by both the re-

searchers and practitioners from the academia and industry. The

existing works on debiasing in recommender systems can be cat-

egorized into four classes, including heuristic-based methods, in-

verse propensity score-based methods [32, 44, 45], unbiased data

augmentation methods [5, 23, 39, 46], and some theoretical tools-

based methods. A heuristic-based method links a user’s feedback

with different specific factors, such as item features [12, 20], user

ratings [25, 43] and public opinions [22, 24], and uses some proba-

bilistic graphical models for modeling. An inverse propensity score-

based method corrects the biased feedback distribution by introduc-

ing some sample weights. An unbiased data augmentation method

guides the model training on biased feedback by introducing an

unbiased data collected by a special uniform policy. Since the collec-

tion process of an unbiased data is very expensive in practice, some

recent methods directly perform debiasing on one single biased data

with some theoretical tools, such as information bottleneck [40],

upper bound minimization [31], asymmetric tri-training [30], and

causal inference techniques [37, 41, 42].

2.2 Information Bottleneck
The information bottleneck method is a technique in information

theory for finding the best trade-off between accuracy and com-

plexity [35]. It has been regarded as a theoretical foundation of

deep learning and been applied to many fields, such as robust or

invariant representation learning [9, 26], disentangled representa-

tion learning [2], compressed representation learning [8], causal

inference [28] and feature detection [33]. The works most relevant

to ours in this line are [7, 15]. They focus on learning disentangled

representation of texts through customized information bottleneck

loss when the labels that only indicate the style information of texts

are given. This representation includes independent style embed-

ding and content embedding, which is similar to our expectation

that the biased and unbiased components in the biased embedding

vector are as independent as possible. However, these methods are

not applicable to the recommender systems since the labels in the

recommendation field indicate a mixture of user preferences and

bias. In addition, as far as we know, there is only one work that

considers the use of information bottleneck to solve the bias prob-

lem in recommender systems. That work is based on contrastive

analysis of feature embedding, which proposes a counterfactual

variational information bottleneck method to solve the selection

bias in the recommender systems [40].

3 NOTATIONS AND PROBLEM
FORMULATION

3.1 Notations
Let X = X1 × · · · × Xd be a d-dimensional observed feature space

and Y = {0, 1} be a label space. In this paper, we focus on solving

the bias problem in recommender systems. Specifically, suppose

we have the following N events(
x1,y1

)
, . . . ,

(
xN ,yN

)
, (1)

where x i =
(
x i
1
, · · · ,x id

)
∈ X and yi ∈ Y are the feature vector

and the label of the i-th event, respectively. According to the nature

of feedback in a typical recommender system, we assume that the

label y satisfies

y =

{
1 the event was displayed and clicked,

0 the event was displayed but not clicked.

(2)

An event represents an interaction between a user and a system.

For example, a commercial system recommends a movie or displays

an advertisement to a user. In particular, when no side information

is available, i.e., only the user ID u and the item ID i are provided,
an event can be simplified to (x = (u, i) ,y).

The feedback events are used to train the recommendationmodel,

which evaluates the users’ preference on the item set as accurately

as possible by learning a decision function ŷ(x) ∈ {−∞,+∞}. In

practice, the decision function is usually implemented based on a

low-rank model and a neural network model, which are also in-

cluded in our experiments. Both of them apply an embedding vector

z∗ as a representation of the input x . Therefore, we can describe

the decision function as a mapping process from the representation

z∗ to the label ŷ, which passes through one or more hidden layers

hj . This process can be formalized as a Markov chain of successive

representations [40], y → x → z∗ → h1 → · · · → hL → ŷ.

3.2 Confounding Bias and Problem
Formulation

To better understand the source of bias and address it in a targeted

manner, in Figure 1(a), we show the generation process of feedback

events in recommender systems from the perspective of causal
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Figure 1: (a) A causal diagram of biased feedback, where x and y are known variables, blue arrows indicate the indirect effect
and red arrows indicate the direct effect. (b) A causal diagram of unbiased feedback where the indirect effect are truncated.
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Figure 2: (a) In the training phase, the model obtains a special biased embedding vector from the variables x , which includes a
biased component r and an unbiased component z. (b) In the test phase, the biased component r is discarded, and the unbiased
component z is used in the recommendation process.

bound of Eq.(3). Finally, we describe a tractable solution for the

objective function LDIB according to the upper bound.

5.1 The De-confounder Penalty Term
Based on the chain rule of mutual information, we have the follow-

ing equation about the de-confounder penalty term 3○ in Eq.(3),

I (z; r ) = I (z;y) − I (z;y |r ) + I (z; r |y) . (4)

We further inspect the term I (z; r |y) in Eq.(4). Since the distribution
of z depends solely on the variables x , we have H (z |y, r ) = H (z |y),
where H (·|·) denotes the conditional entropy [15, 26]. Combining

the properties of mutual information, we have,

I (z; r |y) = H (z |y) − H (z |y, r ) = H (z |y) − H (z |y) = 0. (5)

By substituting Eq.(5) into Eq.(4), we have,

I (z; r ) = I (z;y) − I (z;y |r ) . (6)

Since the term I (z;y |r ) in Eq.(6) is still difficult to be calculated, we

use the form of conditional entropy to further simplify it,

I (z; r ) = I (z;y) − H (y |r ) + H (y |z, r ) . (7)

Figure 1: (a) A causal diagram of biased feedback, where x and y are known variables, blue arrows indicate the indirect effect
and red arrows indicate the direct effect. (b) A causal diagram of unbiased feedback where the indirect effect are truncated.

inference. The input variables x (i.e., the feature vector) can be

divided into three parts, including the instrumental variables I ,
the confounder variables C and the adjustment variables A. The
instrumental variables I and the confounder variables C determine

the treatment T , and they have an indirect effect on the outcome y
(i.e., the label) through the path {I ,C} → T → y. The confounder
variables C and the adjustment variables A have a direct effect on

y through the path {C,A} → y. Similar causal diagrams can also

be found in previous works on treatment effect estimation [13, 18],

and we follow their assumptions, i.e., strong ignorability [29]. The

term “treatment” in recommender systems can be thought of as

referring to a recommendation strategy, this is, which items the

system selects, as well as how the system organizes and shows

these items to some specific users.

Different recommendation strategies will produce different indi-

rect effects on feedback events by influencing the treatmentT . This
will lead to the inherent variability in the feedback events, and make

most recommendation models that aim to minimize the error of

the observed feedback not have good generalizability. Conversely,

because the direct effect does not depend on the treatment, it can be

considered as a stable and true user preference. This means that if

we can cut off the indirect effect, i.e., we have a special strategy that

only depends on the direct effect, then the collected feedback events

are relatively stable and unbiased. We show the generation process

of this unbiased feedback event in Figure 1(b). By comparing Fig-

ure 1(a) and 1(b), we call the bias brought by the recommendation

strategy the confounding bias. Confounding bias is essentially a

collection of biases at the system level, such as the position bias

and popularity bias.

Definition 3.1 (Confounding Bias). Suppose that the variables
x , the outcome y, the indirect effect {I ,C} → T → y and the direct
effect {C,A} → y from x to y are given. Confounding bias refers
to the confusion of the observed feedback in recommender systems
caused by the indirect effect.

On the other hand, previous works have shown that the unbiased

feedback can be obtained through a uniform policy [5, 23, 39, 46],

i.e., for user requests, the system randomly samples items from a

candidate set, and displays them after some random arrangement.

However, the uniform policy will harm the user experience and

reduce the platform revenue. Hence, a more appealing scenario

is that only the biased feedback is available. Therefore, in this

paper, we focus on mitigating the confounding bias with the biased

feedback alone.

4 THE PROPOSED METHOD
In practice, it may be difficult to directly group the variables x to

obtain the instrumental variables I , the confounder variablesC and

the adjustment variables A. Instead, since the goal of most recom-

mendation models is to learn an accurate embedding representation

vector derived from the variables x , we make a general assumption,

which is intuitively reasonable. The representation z∗, which is a

good proxy for the variables x , naturally suffers from the influence

of the biased variables in x . Since the correspondence between the

biased variables and the semantics of the dimension in z∗ is difficult

to be obtained, z∗ is also indistinguishable.

Assumption 4.1. The confounding bias will be reflected in the
embedding representation learned by a traditional recommendation
model, and the bias will usually corrupt all the dimensions, i.e., the
original representation z∗ is biased and indistinguishable.

Based on this assumption, we illustrate the main idea of the

proposed method in Figure 2. In the training phase (i.e., Figure 2(a)),

we constrain the model to obtain a special biased representation

vector from the variables x , which includes two independent com-

ponents, i.e., a biased component r and an unbiased component z.
The biased component r is responsible for the indirect effect, while
the unbiased component z is responsible for the direct effect. Note
that this special biased embedding vector, i.e., [r , z], is easier to
distinguish the influence of the confounding bias than the original

representation z∗. In the test phase (i.e., Figure 2(b)), we discard the

biased component and only use the unbiased component for more

accurate recommendation.
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bound of Eq.(3). Finally, we describe a tractable solution for the

objective function LDIB according to the upper bound.

5.1 The De-confounder Penalty Term
Based on the chain rule of mutual information, we have the follow-

ing equation about the de-confounder penalty term 3○ in Eq.(3),

I (z; r ) = I (z;y) − I (z;y |r ) + I (z; r |y) . (4)

We further inspect the term I (z; r |y) in Eq.(4). Since the distribution
of z depends solely on the variables x , we have H (z |y, r ) = H (z |y),
where H (·|·) denotes the conditional entropy [15, 26]. Combining

the properties of mutual information, we have,

I (z; r |y) = H (z |y) − H (z |y, r ) = H (z |y) − H (z |y) = 0. (5)

By substituting Eq.(5) into Eq.(4), we have,

I (z; r ) = I (z;y) − I (z;y |r ) . (6)

Since the term I (z;y |r ) in Eq.(6) is still difficult to be calculated, we

use the form of conditional entropy to further simplify it,

I (z; r ) = I (z;y) − H (y |r ) + H (y |z, r ) . (7)

Figure 2: (a) In the training phase, the model obtains a special biased embedding vector from the variables x , which includes a
biased component r and an unbiased component z. (b) In the test phase, the biased component r is discarded, and the unbiased
component z is used in the recommendation process.

From Figure 1(a), we can see that in order to meet our expectation

on more accurate recommendation, we have to satisfy the following

conditions: 1) to avoid the influence of the biased variables, the

unbiased component z should not overfit the variables x ; 2) due to
the role of the direct effect, the unbiased component z needs to pre-
dict the label y as accurately as possible; 3) the biased component r
and the unbiased component z must be as independent as possible

to get a better distinction, i.e., z ⊥ r ; and 4) due to the role of the

indirect effect, the biased component r is also beneficial to predict

the labely to a certain extent. Note that we have not constrained the

relationship between the biased component r and the variables x ,
because the degree of dependence between them is determined by

the strength of the bias in the feedback data, and blindly optimizing

it may lead to bad results. Inspired by information theory, we can

then derive the required objective function to be minimized from

the above analysis,
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(i.e., the label) through the path {I ,C} → T → y. The confounder
variables C and the adjustment variables A have a direct effect on

y through the path {C,A} → y. Similar causal diagrams can also

be found in previous works on treatment effect estimation [13, 18],

and we follow their assumptions, i.e., strong ignorability [29]. The

term “treatment” in recommender systems can be thought of as

referring to a recommendation strategy, this is, which items the

system selects, as well as how the system organizes and shows

these items to some specific users.

Different recommendation strategies will produce different indi-

rect effects on feedback events by influencing the treatmentT . This
will lead to the inherent variability in the feedback events, and make

most recommendation models that aim to minimize the error of

the observed feedback not have good generalizability. Conversely,

because the direct effect does not depend on the treatment, it can

be considered a stable and true user preference. This means that if

we can cut off the indirect effect, i.e., a special strategy that only

depends on the direct effect, then the collected feedback events

are relatively stable and unbiased. We show the generation pro-

cess of this unbiased feedback event in Figure 1(b). By comparing

Figure 1(a) and 1(b), we call the bias brought from the recommenda-

tion strategy the confounding bias. Confounding bias is essentially

a collection of biases at the system level, such as the position bias

and popularity bias.
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i.e., for user requests, the system randomly samples items from a

candidate set, and displays them after some random arrangement.

However, the uniform policy will harm the user experience and

reduce the platform revenue. Hence, a more appealing scenario

is that only the biased feedback is available. Therefore, in this

paper, we focus on mitigating the confounding bias with the biased

feedback alone.

4 THE PROPOSED METHOD
In practice, it may be difficult to directly group the variables x to

obtain the instrumental variables I , the confounder variablesC and

the adjustment variables A. Instead, since the goal of most recom-

mendation models is to learn an accurate embedding representation

vector derived from the variables x , we make a general assumption,

which is intuitively reasonable. The representation z∗, which is a

good proxy for the variables x , naturally suffers from the influence

of the biased variables in x . Since the correspondence between the

biased variables and the semantics of the dimension in z∗ is difficult

to be obtained, z∗ is also indistinguishable.

Assumption 4.1. The confounding bias will be reflected in the
embedding representation learned by a traditional recommendation
model, and the bias will usually corrupt all the dimensions, i.e., the
original representation z∗ is biased and indistinguishable.

Based on this assumption, we illustrate the ideas behind the

proposed method in Figure 2. In the training phase (i.e., Figure 2(a)),

we constrain the model to obtain a special biased representation

vector from the variables x , which includes two independent com-

ponents, i.e., a biased component r and an unbiased component z.
The biased component r is responsible for the indirect effect, while
the unbiased component z is responsible for the direct effect. Note
that this special biased embedding vector, i.e., [r , z], is easier to
distinguish the influence of the confounding bias than the original

representation z∗. In the test phase (i.e., Figure 2(b)), we discard the

biased component and only use the unbiased component for more

accurate recommendation.

From Figure 1(a), we can see that in order to meet our expectation

on more accurate recommendation, we have to satisfy the following

conditions: 1) to avoid the influence of the biased variables, the

unbiased component z should not overfit the variables x ; 2) due
to the role of the direct effect, the unbiased component z needs to
predict the labely as accurately as possible; 3) the biased component

r and the unbiased component z must be as independent as possible

to get a better distinction, i.e., z ⊥ r ; and 4) due to the role of the

indirect effect, the biased component r is also beneficial to predict

the labely to a certain extent. Note that we have not constrained the

relationship between the biased component r and the variables x ,
because the degree of dependence between them is determined by

the strength of the bias in the feedback data, and blindly optimizing

it may lead to bad results.

Inspired by information theory, we can then derive the required

objective function from the above analysis,

LDIB := min β I (z;x)︸   ︷︷   ︸
1○

− I (z;y)︸ ︷︷ ︸
2○

+γ I (z; r )︸  ︷︷  ︸
3○

−α I (r ;y)︸   ︷︷   ︸
4○

, (3)

where term 1○ is a compression term that describes the mutual

information between the variables x and the unbiased embedding

z; term 2○ is an accuracy term that describes the performance of

the unbiased embedding z; term 3○ is a de-confounder penalty

term, which describes the dependency degree between the biased

embedding r and the unbiased embedding z; and term 4○ is similar

to term 2○, which is used for the potential gain from the biased

embedding r . Note that β , γ and α are the weight parameters. Since

terms 1○ and 2○ in Eq.(3) are similar to a standard information

bottleneck, we call the proposed method a debiased information
bottleneck, or DIB for short. By optimizing LDIB , we expect to get

the desired biased and unbiased components, and can then prune

the confounding bias.

5 A TRACTABLE OPTIMIZATION
FRAMEWORK

LDIB is clearly an intractable optimization function, especially the

key term I (z; r ) used to induce the desired embedding separation.

Next, we discuss the optimization of the de-confounder penalty

term I (z; r ) and the compression term I (z;x), and derive an upper

(3)

where term 1○ is a compression term that describes the mutual

information between the variables x and the unbiased embedding

z; term 2○ is an accuracy term that describes the performance of

the unbiased embedding z; term 3○ is a de-confounder penalty

term, which describes the dependency degree between the biased

embedding r and the unbiased embedding z; and term 4○ is similar

to term 2○, which is used for the potential gain from the biased

embedding r . Note that β , γ and α are the weight parameters. Since

terms 1○ and 2○ in Eq.(3) are similar to a standard information

bottleneck, we call the proposed method a debiased information
bottleneck, or DIB for short. By optimizing LDIB , we expect to get

the desired biased and unbiased components, and can then prune

the confounding bias.

5 A TRACTABLE OPTIMIZATION
FRAMEWORK

LDIB is clearly an intractable optimization function, especially the

key term I (z; r ) used to induce the desired embedding separation.

Next, we discuss the optimization of the de-confounder penalty

term I (z; r ) and the compression term I (z;x), and derive an upper

bound of Eq.(3). Finally, we describe a tractable solution for the

objective function LDIB according to the upper bound.

5.1 The De-confounder Penalty Term
Based on the chain rule of mutual information, we have the follow-

ing equation about the de-confounder penalty term 3○ in Eq.(3),

I (z; r ) = I (z;y) − I (z;y |r ) + I (z; r |y) . (4)

We further inspect the term I (z; r |y) in Eq.(4). Since the distribu-

tion of z depends solely on the variables x , and x is affected by y,
we have H (z |y, r ) = H (z |y), where H (·|·) denotes the conditional

entropy [15, 26]. Combining the properties of mutual information,

we have,

I (z; r |y) = H (z |y) − H (z |y, r ) = H (z |y) − H (z |y) = 0. (5)

By substituting Eq.(5) into Eq.(4), we have,

I (z; r ) = I (z;y) − I (z;y |r ) . (6)

Since the term I (z;y |r ) in Eq.(6) is still difficult to be calculated, we

use the form of conditional entropy to further simplify it,

I (z; r ) = I (z;y) − H (y |r ) + H (y |z, r ) . (7)
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Finally, combining Eq.(3) and Eq.(7), we can rewrite the objective

function LDIB in Eq.(3) as follows,

LDIB = β I (z;x) − I (z;y) + γ I (z; r ) − α I (r ;y)

= β I (z;x) − I (z;y) + γ [I (z;y) − H (y |r ) + H (y |z, r )] − α I (r ;y)

= β I (z;x) − (1 − γ ) I (z;y) − γH (y |r ) + γH (y |z, r ) − α I (r ;y) .
(8)

5.2 The Compression Term
We can find that only the compression term I (z;x) is related to

the variables x in Eq.(8). To optimize it directly, we describe a

simple and precise expression of this mutual information using a

method similar to that in [15, 40]. First, based on the relationship

between mutual information and Kullback-Leibler (KL) divergence,

the compression term I (z;x) can be calculated as follows,

I (z;x) = Ex [DKL(p(z |x) ∥ p(z))]

=
∑
x

p(x)
∑
z

p(z |x) logp(z |x) −
∑
z

p(z) logp(z). (9)

However, the marginal probability p(z) =
∑
x p(z |x)p(x) is usually

difficult to be calculated in practice. We use variational approxima-

tion to address this issue, i.e., we use a variational distribution q(z)
instead of p(z). According to Gibbs’ inequality, we know that the

KL divergence is non-negative. Therefore, we can derive an upper

bound of Eq.(9),

DKL (p (z) ∥ q (z)) ≥ 0

⇒ −
∑
z

p(z) logp(z) ≤ −
∑
z

p(z) logq(z)

⇒ DKL (p (z |x) ∥ p (z)) ≤ DKL (p (z |x) ∥ q (z)) .

(10)

Similar to most previous works [21], we can assume that the

posterior p(z |x) = N
(
µ (x) , diag

{
σ 2(x)

})
is a Gaussian distribu-

tion, where µ (x) is the encoded embedding of the variables x
and diag

{
σ 2(x)

}
is the diagonal matrix indicating the variance.

Through the reparameterization trick, the embedding z can be

generated according to z = µ (x) + ϵ ⊙ σ (x), where ϵ ∼ N (0, I ).
Obviously, if we fix σ (x) to be an all-zero matrix, z will reduce

to a deterministic embedding. On the other hand, the prior q (z)
is assumed to be a standard Gaussian variational distribution, i.e.,

q (z) = N (0, I ). Finally, we can rewrite the above upper bound,

DKL (p (z |x) ∥ q (z)) =
1

2

∥µ (x)∥2
2
+
1

2

∑
d

(
σ 2

d − logσ 2

d − 1

)
, (11)

whereσ 2

d is an element in diag

{
σ 2(x)

}
, i.e., diag

{
σ 2(x)

}
= {σ 2

d }
D
d=1.

This means that for a deterministic embedding z, we can optimize

this upper bound by directly applying the ℓ2-norm regularization

on the embedding vector z, which is equivalent to optimizing the

compression term I (z;x). Note that the compression term in previ-

ous works act on the entire biased representation z∗, and we only

compress the unbiased component z of the representation.

5.3 Algorithm
For the mutual information I (z;y) in Eq.(8), we have I (z;y) =
H (y)−H (y |z). SinceH (y) is a positive constant and can be ignored,
we have the following inequality,

I (z;y) ≥ −H (y |z) . (12)

This inequality also applies to the mutual information I (r ;y) in
Eq.(8). Combining Eq.(11) and Eq.(12), we can rewrite Eq.(8) as

follows,

LDIB = β I (z;x) − (1 − γ ) I (z;y) − γH (y |r ) + γH (y |z, r ) − α I (r ;y)

≤ β ∥µ(x)∥2
2
+ (1 − γ )H (y |z) − (γ − α)H (y |r ) + γH (y |z, r ).

(13)

Finally, we get a tractable solution for LDIB ,

ˆLDIB = (1 − γ )H (y |z)︸           ︷︷           ︸
(a)

− (γ − α)H (y |r )︸           ︷︷           ︸
(b)

+γH (y |z, r )︸      ︷︷      ︸
(c)

+ β ∥µ(x)∥2
2︸     ︷︷     ︸

(d )

,

(14)

where 0 < α < γ < 1. Let ŷr , ŷz , and ŷz,c be the predicted labels

generated by the biased component r , the unbiased component

z, and the biased embedding vector [z, r ] as shown in Figure 2(a),

respectively, the final objective function also contains four terms:

term (a) denotes the cross entropy between ŷz and y; term (b)
denotes the cross entropy between ŷr and y; term (c) denotes the
cross entropy between ŷz,r andy; and term (d) is the regularization
term to improve the robustness of the embedding representation.

A complete optimization process of DIB is shown in Algorithm 1.

Algorithm 1 Debiased Information Bottleneck (DIB)

Input: Observed feedback events {(x ,y)}; hyper-parameters

α , β ,γ ;
1: Initialize the parameters of the model θ (including the biased

embedding representation r and the unbiased embedding rep-

resentation z);
2: repeat
3: Calculate term (c) in Eq.(14) by the concatenation of z and

r , i.e., H (y |z, r );
4: Calculate term (a) in Eq.(14) by z, i.e., H (y |z) (to keep the

dimensions consistent, z is concatenated with a zero vector

with the same dimension of r );
5: Calculate term (b) in Eq.(14) by r , i.e., H (y |r ) (similar to the

above operation);

6: Calculate term (d) in Eq.(14) by applying regularization to

z;
7: Update the model parameters θ via stochastic gradient de-

scent based on
ˆLDIB (i.e., Eq.(14));

8: until training loss stops to decrease.

6 EXPERIMENTS
In this section, we conduct comprehensive experiments with the

aim of answering the following three key questions.

• RQ1: How does the proposed method perform against the base-

lines in an unbiased evaluation?

• RQ2: What is the role of each term in the proposed method (i.e.,

the ablation studies of our DIB)?

• RQ3: What are the characteristics of the proposed method in the

training process?

6.1 Experiment Setup
6.1.1 Datasets. In order to evaluate the performance of the model

in mitigating the confounding bias, we need a test set that includes
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Table 1: Statistics of the datasets. P/N represents the ratio
between the numbers of positive and negative feedback.

Yahoo! R3 Product
#Feedback P/N #Feedback P/N

training 254,713 67.02% 4,160,414 2.21%

validation 56,991 67.00% 897,449 2.15%

test 54,000 9.64% 225,762 1.03%

unbiased feedback events to simulate the ideal distribution. We

consider both a public dataset and a real-world product dataset in

the experiments, where the statistics are described in Table 1.

• Yahoo! R3: This dataset contains ratings collected from two

different sources on Yahoo! Music services, containing 15,400

users and 1000 songs. The user set consists of ratings provided

by users’ subjective choices and is therefore considered to be

biased. The random set consists of ratings collected during an

online survey, i.e., each of the first 5400 users is required to

provide ratings on ten randomly displayed songs, which can

be considered unbiased. We binarize each rating by checking

whether it is larger than 3 and then obtain some positive feedback

and negative feedback. Note that the missing entries are treated

as negative feedback. For the user set, we randomly split it into

two subsets from the user level: 80% of each user’s feedback for

training and the remaining 20% for validation to tune the hyper-

parameters. The random set is used as the test set for evaluating

our method.

• Product: This is a large-scale dataset for CTR prediction, which

includes two weeks of user click records from a real-world adver-

tising system. This data covers 122 displayed advertisements and

approximately 300,000 users. Similarly, it contains a user set and

a random set. The user set is recorded when the system is using

several traditional ranking-oriented recommendation policies,

and the random set is recorded using a uniform policy. Next, we

randomly split the user set into two subsets in the same way as

that for Yahoo! R3, i.e., 80% feedback is used as the training set,

and the rest is used as the validation set. The entire random set

is used as the test set.

6.1.2 Evaluation Metrics. For all experiments, we employ four eval-

uation metrics that are widely used in recommender systems, in-

cluding the area under the ROC curve (AUC), precision (P@K),

recall (R@K) and normalized discounted cumulative gain (nDCG).

We set the length of the recommendation list as 50, and choose

AUC as our main evaluation metric because it is one of the most

important metrics in the industry and previous works on debiasing.

Due to space limitation, we report the results of P@K and R@K

when K is 5 and 10, and the results of nDCG when K is 50.

6.1.3 Baselines. Since most debiasing methods are integrated into

some existing recommendation models, in order to evaluate the

generalization of our method, we adopt two of the most common

recommendation models as the backbones, i.e., matrix factorization

(MF) [17] and neural collaborative filtering (NCF) [14]. In addition,

among the four lines of debiasing methods summarized in Sec. 2.1,

the heuristic-based methods are usually inefficient, and the unbi-

ased data augmentation methods are not suitable for the scenario

where only a biased data is available for training in this paper.

Therefore, we choose the representative methods in the other two

lines as the baselines. Note that based on different backbones, each

of these baselines has two versions.

• MF [17]: This is one of the most classic recommendation mod-

els. The user-item interaction matrix is factorized to learn the

representation of the users and items, and their inner products

are used to predict the preferences.

• NCF [14]: This is one of the most classic recommendation mod-

els combined with neural networks. Compared with the linearity

of matrix factorization, neural networks are used to model the

nonlinear relationship between users and items to further im-

prove the recommendation performance.

• IPS [32]: This is a representative method based on the inverse

propensity score (IPS) in debiasing recommendation. The esti-

mated propensity score is used as the weight of the training

feedback to adjust the biased distribution of the feedback. We es-

timate the propensity score of item i for any user via the relative

item popularity,

P∗,i =

( ∑
u ∈U Ou,i

maxi ∈I
∑
u ∈U Ou,i

)η
, (15)

where Ou,i indicates the observation status of user u for item i ,
i.e., Ou,i = 1 means that the user u observes the item i , while
Ou,i = 0 is the opposite, and η is a control weight used to adapt

to different datasets. Similar methods have also been adopted in

previous works [19, 31].

• SNIPS [34]: The above method based on the inverse propensity

score has the problem of high variance. To solve this problem, a

self-normalized inverse propensity score is proposed and can be

written as,

LSN IPS =

∑
(u,i):Ou,i=1

L

(
Ŷu,i ,Yu,i

)
Pu,i∑

(u,i):Ou,i=1
1

Pu,i

, (16)

where Pu,i is calculated according to Eq.(15), and L

(
Ŷu,i ,Yu,i

)
is the cross-entropy loss of the observed feedback. Yu,i and Ŷu,i
are the true and predicted label of user u for item i , respectively.

• AT [30]: For the selection bias in recommender systems, an

upper bound of the generalization error is derived and solved by

an asymmetric tri-training method. Two pre-models are used to

generate a pseudo-label set, and the target model and the two

pre-models are then retrained on this set. This process is repeated

until the debiasing performance of the target model is improved

the most.

• Rel [31]: Based on the idea of positive unlabeled learning, an

unbiased estimation is derived for binary feedback modeling in

recommender systems. The inverse propensity score is estimated

and weighted differently for positive feedback and negative feed-

back. The objective function can be represented as follows,

ˆLRel =
1

|D|

∑
(u,i)∈D

[
Yu,i
Pu,i

δ
(1)

u,i + (1 −
Yu,i
Pu,i

)δ
(0)

u,i

]
,

(17)
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Table 2: Hyper-parameters and their values tuned in the ex-
periments.

Name Range Functionality

rank {5, 10, · · · , 195, 200} Embedded dimension

β
{
1e−5, 1e−4, · · · , 1e−1, 1

}
Regularization

bs
{
2
7, 28, · · · , 213, 214

}
Batch size

lr
{
1e−4, 5e−4 · · · 5e−2, 1e−1

}
Learning rate

γ [0.1, 0.2] Loss weighting

α [0.001, 0.1] Loss weighting

where δ
(1)

u,i and δ
(0)

u,i denote the positive loss and the negative loss,

respectively, and Pu,i is calculated by Eq.(15).

• CVIB [40]: It is an alternative framework for debiasing learning

without an unbiased feedback data, which is called the information-

theoretic counterfactual variational information bottleneck. By

separating the task-aware mutual information term in standard

information bottleneck into a factual part and a counterfactual

part, it derives a contrastive information regularizer and an addi-

tional output confidence penalty to improve the learning balance

between the observed and unobserved data.

6.1.4 Implementation Details. We implement all the methods on

TensorFlow with the Adam optimizer
1
. By evaluating the perfor-

mance on AUC on the validation set, we use the hyper-parameter

search library Optuna [4] to accelerate the tuning process of all

the methods. The range of the values of the hyper-parameters are

shown in Table 2. Note that the source codes, parameter search

records and results are available at https://github.com/dgliu/RecSys21_

DIB.

6.2 RQ1: Comparison Results of Unbiased
Evaluation

The comparison results are reported in Table 3 and Table 4. For

the results of using matrix factorization as the backbone model

shown in Table 3, the proposed method consistently outperforms

all the baselines on all the metrics across the two datasets of Yahoo!

R3 and Product. In addition, we have the following main obser-

vations: 1) The debiasing method is usually better than the basic

baseline, i.e., matrix factorization, except for IPS-MF on Yahoo! R3.

This may be due to the inaccurate estimation of the propensity

score when the data size is small. 2) By avoiding the estimation

of the propensity score and providing theoretical completeness,

theoretical tools-based methods (i.e., CVIB, AT, and Rel) usually

achieve better and more stable performance. 3) For the baseline

CVIB-MF whose objective function is also induced by information

theory, its improvement over MF on Yahoo! R3 is small, while the

proposed method is better and more robust on both datasets.

For the results of using neural collaborative filtering as the back-

bone shown in Table 4, the proposed method outperforms all the

baselines in most cases. Specifically, we have the following obser-

vations: 1) when K takes a relatively small value on Product, the

1
https://www.tensorflow.org

proposed method is slightly worse than IPS-NCF. However, when

K takes a larger value, the proposed method has obvious perfor-

mance advantages. This means that the proposed method still has

better overall performance. 2) Even with the use of the techniques

to reduce variance, the incorrect estimation of the propensity score

in a small dataset will be further exacerbated. 3) AT and Rel may

not be well adapted to neural network-based models due to their

dependence on certain types of loss functions.

6.3 RQ2: Ablation Studies
To understand the respective effects of the last three terms in Eq.(14)

on model training, we conduct ablation studies on Yahoo! R3 and

Product. The results are shown in Table 5. In the first half of Table 5,

we show the results using matrix factorization as the backbone.

For the results on Yahoo! R3, we can see that removing any term

will hurt the performance in most cases, and removing term (d)
leads to the worst performance. This may be due to the small size of

Yahoo! R3, which causes the term (d) to play a more important role

in avoiding overfitting of the model to the training set. Conversely,

we can find that the effect of removing the term (d) on the larger

Product dataset is small.

We show the results using neural collaborative filtering as the

backbonemodel in the second half of Table 5.We note that removing

the term (d) will bring the greatest performance degradation on

different data scales. One possible reason is that the neural network-

based model introduces more parameters, and these parameters

need to be well learned under the constraints of regularization

terms. There are some unexpected cases in Table 5, i.e., when K

takes a small value, the full version of the proposed method has a

slight disadvantage on a few metrics. This may be due to the noise

caused by only considering AUC in parameter tuning. In general,

all terms in the proposed method can synergistically produce the

greatest gain.

6.4 RQ3: Model Analysis
In this section, we conduct some more in-depth analysis of the

proposed method in order to have a better understanding of the

properties of the proposed method.

6.4.1 Visualization of the biased component r and the unbiased
component z. Akey question is whether the biased component r and
the unbiased component z in the proposed method have a pattern

that meets the expectation, i.e., they gradually become independent

in training. To answer this question, at several training time points,

we use the t-SNE [36] method to visualize the biased and unbiased

components. The results are shown in Figure 3. We can see that

as the training progresses, there is a clear separation between the

biased component in blue and the unbiased component in red. This

verifies the effectiveness of the proposed method. We also note that

the unbiased component is looser than the biased component, and a

small part of the unbiased component is still mixed with the biased

component. This may be because the unbiased component needs to

learn the personalized differences between the users, among whom

there are still some users who are difficult to be distinguished.

6.4.2 Visualization of the loss of each term in LDIB . We next an-

alyze the trend of the loss of each term in LDIB . The results are
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Table 3: Comparison results of unbiased evaluation using MF as the backbone model, where the best results and the second
best results are marked in bold and underlined, respectively. AUC is the main evaluation metric.

Yahoo! R3 Product

Method AUC nDCG P@5 P@10 R@5 R@10 AUC nDCG P@5 P@10 R@5 R@10

MF 0.7081 0.0341 0.0043 0.0043 0.0123 0.0273 0.6936 0.0324 0.0085 0.0079 0.0407 0.0752

IPS-MF 0.7040 0.0259 0.0031 0.0033 0.0091 0.0182 0.7125 0.0408 0.0095 0.0105 0.0456 0.1019

SNIPS-MF 0.7124 0.0390 0.0057 0.0048 0.0182 0.0293 0.7098 0.0403 0.0092 0.0104 0.0438 0.1003

CVIB-MF 0.7086 0.0488 0.0080 0.0075 0.0253 0.0471 0.7143 0.0521 0.0106 0.0109 0.0520 0.1076

AT-MF 0.7290 0.0676 0.0113 0.0101 0.0345 0.0629 0.7191 0.0443 0.0110 0.0113 0.0532 0.1092

Rel-MF 0.7469 0.0843 0.0159 0.0131 0.0526 0.0863 0.6709 0.0656 0.0157 0.0142 0.0776 0.1386

DIB-MF 0.7602 0.0932 0.0177 0.0151 0.0566 0.0960 0.7365 0.0819 0.0198 0.0173 0.0965 0.1688

Table 4: Comparison results of unbiased evaluation using NCF as the backbone model, where the best results and the second
best results are marked in bold and underlined, respectively. AUC is the main evaluation metric.

Yahoo! R3 Product

Method AUC nDCG P@5 P@10 R@5 R@10 AUC nDCG P@5 P@10 R@5 R@10

NCF 0.7251 0.0350 0.0037 0.0036 0.0097 0.0203 0.7211 0.1465 0.0174 0.0136 0.0865 0.1343

IPS-NCF 0.7221 0.0322 0.0032 0.0039 0.0085 0.0219 0.7284 0.1463 0.0176 0.0135 0.0870 0.1330

SNIPS-NCF 0.7230 0.0310 0.0030 0.0031 0.0087 0.0175 0.7257 0.1454 0.0173 0.0135 0.0856 0.1323

CVIB-NCF 0.7265 0.0347 0.0036 0.0030 0.0105 0.0177 0.7291 0.1440 0.0149 0.0137 0.0732 0.1350

AT-NCF 0.7139 0.0333 0.0031 0.0033 0.0084 0.0179 0.6814 0.1464 0.0156 0.0139 0.0774 0.1375

Rel-NCF 0.6867 0.0507 0.0071 0.0064 0.0233 0.0408 0.6653 0.1404 0.0156 0.0145 0.0763 0.1423

DIB-NCF 0.7553 0.0686 0.0108 0.0101 0.0339 0.0630 0.7345 0.1483 0.0175 0.0163 0.0865 0.1613

Table 5: Results of the ablation studies using MF and NCF as the backbone models, where the best results and the second best
results are marked in bold and underlined, respectively. AUC is the main evaluation metric.

Yahoo! R3 Product

Method AUC nDCG P@5 P@10 R@5 R@10 AUC nDCG P@5 P@10 R@5 R@10

DIB-MF 0.7602 0.0932 0.0177 0.0151 0.0566 0.0960 0.7365 0.0819 0.0198 0.0173 0.0965 0.1688

w/o term (b) 0.7505 0.0893 0.0175 0.0138 0.0563 0.0909 0.7173 0.0546 0.0126 0.0115 0.0614 0.1112

w/o term (c) 0.7545 0.0915 0.0173 0.0142 0.0569 0.0937 0.7156 0.0511 0.0109 0.0113 0.0527 0.1083

w/o term (d) 0.7342 0.0769 0.0144 0.0117 0.0478 0.0737 0.6809 0.0719 0.0178 0.0153 0.0867 0.1504

DIB-NCF 0.7553 0.0686 0.0108 0.0101 0.0339 0.0630 0.7345 0.1483 0.0175 0.0163 0.0865 0.1613

w/o term (b) 0.7326 0.0553 0.0089 0.0081 0.0271 0.0489 0.7274 0.1474 0.0181 0.0131 0.0901 0.1294

w/o term (c) 0.7373 0.0592 0.0097 0.0093 0.0292 0.0585 0.7276 0.1474 0.0181 0.0131 0.0901 0.1294

w/o term (d) 0.7243 0.0597 0.0102 0.0099 0.0318 0.0603 0.7133 0.1438 0.0177 0.0123 0.0876 0.1214

shown in Figure 4. A sufficient reduction in the loss of term (a)
guarantees the basic performance of the proposed method (corre-

sponding to the unbiased component z). By comparing the trends

of term (b) and term (c), we can see that using the biased com-

ponent r alone will lead to a very poor result, but as long as it is

combined with the unbiased component z, the best result can be

achieved. This is reasonable, because the biased component itself

does not reflect the user’s preferences well, but the combination

with the unbiased component will lead to an over-approximation

effect on the observed feedback. In addition, the trend of term (d)

358



Mitigating Confounding Bias in Recommendation via Information Bottleneck RecSys ’21, September 27-October 1, 2021, Amsterdam, Netherlands

(a) Initialization (b) Epoch=100 (c) Epoch=200 (d) Convergence

Figure 3: Dynamic visualization of the unbiased component z and the biased component r as training progresses, in which the
blue and red points are used to denote the biased component and the debiased component, respectively.

indicates that the compression term is helpful in learning a more

ideal unbiased component throughout the training process.
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Figure 4: The trend of the loss of each term in LDIB as train-
ing progresses.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we describe the generation process of the biased and

unbiased feedback in recommender systems via two respective

causal diagrams, and then define a new bias based on the difference

between them, which is called confounding bias. When only the

biased feedback is available, we analyze the conditions that need to

be met to alleviate the confounding bias, and propose a debiased

information bottleneck (DIB) method to perform this optimization

process based on the guidance of information theory. Moreover, we

also derive a tractable solution for the proposed method. We verify

the effectiveness of the proposed method on a public dataset and

a real product dataset. In addition, we also include some ablation

studies and deep analysis of the proposed method.

For future works, we plan to extend the proposed method to

scenarios where more than one biased data is available. We are

also interested in further relaxing the independent assumptions

of the unbiased and biased components, that is, there may be a

special mixed component entangled with the biased or unbiased

component in some tasks.
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