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ABSTRACT
Although debiasing in multimedia recommendation has shown
promising results, most existing work relies on the ability of the
model itself to fully disentangle the biased and unbiased informa-
tion and considers arbitrarily removing all the biases. However, in
many business scenarios, it is usually possible to extract a subset
of features associated with the biases by means of expert knowl-
edge, i.e., the confounding proxy features. Therefore, in this paper,
we propose a novel debiasing framework with confounding proxy
priors for the accuracy-bias tradeoff learning in the multimedia
recommendation, or CP2Rec for short, in which these confounding
proxy features driven by the expert experience are integrated into
the model as prior knowledge corresponding to the biases. Specifi-
cally, guided by these priors, we use a bias disentangling module
with some orthogonal constraints to force the model to avoid en-
coding biased information in the feature embeddings. We then
introduce an auxiliary unbiased loss to synergize with the original
biased loss in an accuracy-bias tradeoff module, aiming at recover-
ing the beneficial bias information from the above-purified feature
embeddings to achieve a more reasonable accuracy-bias tradeoff
recommendation. Finally, we conduct extensive experiments on a
public dataset and a product dataset to verify the effectiveness of
CR2Rec. In addition, CR2Rec is also deployed on a large-scale finan-
cial multimedia recommendation platform in China and achieves a
sustained performance gain.
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1 INTRODUCTION
Multimedia recommendation is a key component in many mobile
Internet platforms, aiming to accurately recommend multimodal
items to different users that they are more likely to be interested
in [3, 24]. Click-through rate (CTR) prediction is an important tech-
nique to achieve this goal, but it is susceptible to various biases
in user-system interactions, including the user-induced biases and
the system-induced biases caused by the user characteristics and
the deployed recommendation policies, respectively [5]. Since in-
tervening with the users to control the user-induced biases may
bring some potential risks, most existing works focus on how to
effectively mitigate the system-induced biases.

Existing works for debiased recommendation can be mainly di-
vided into two categories according to whether an additional subset
of unbiased feedback is introduced or not, i.e., debiased learning
with and without an unbiased feedback subset [2, 4, 14, 17, 28, 36],
where this subset is collected by using a uniform policy instead
of the recommendation policy to avoid as much as possible the
source of system-induced biases. With the unbiased knowledge
provided by a subset of unbiased feedback, the former aims to de-
sign various effective knowledge transfer strategies to guide the
ideal training of recommendation models. When unbiased knowl-
edge is not available, the latter introduces various techniques to
ensure the unbiasedness of the optimization objective based on
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some prior modeling assumptions about the biases. Since collect-
ing an unbiased feedback subset usually requires a large cost in
many practical applications, we focus on the latter in this paper.
Although debiasing learning without an unbiased feedback subset
has shown promising results, most of them expect the model to be
able to accurately distinguish the biased and unbiased information
from all the input features, and consider arbitrarily removing all the
biases. This is easy to bring the learning burden and performance
bottleneck of the model.

In particular, in many business scenarios, a subset of features
associated with biased information can be defined based on expert
knowledge, which is called the confounding proxy features in this
paper. Intuitively, introducing the confounding proxy features as
the prior knowledge during the modeling process is expected to
reduce the learning burden of the model and more effectively guide
the model explicitly to avoid encoding biased information. Further-
more, we argue that some beneficial biases that fit these properties
should not be completely eliminated, since the decision-making
behavior of most users is still likely to be bias-driven. As shown
in Figure 1, taking the homepage recommendation of a large-scale
online financial management platform in China as an example, we
can define a set of confounding proxy features such as position in-
dex, fund tags, fund yield trend chart, and fund average return rate.
Moreover, the latter two features can be considered as beneficial
biases, since cost-effective funds will get more exposure and are
justified for user experience. This motivates us to explore a new
debiasing framework to efficiently integrate the confounding proxy
priors and achieve a better accuracy-bias tradeoff for multimedia
recommendation.

Figure 1: The homepage recommendation of a large-scale
online financial management platform in China, including
indications of various features, where the blue ones represent
the features related to beneficial biases.

In this paper, we propose a novel accuracy-bias tradeoff recom-
mendation framework via the confounding proxy priors, or CP2Rec
for short. Specifically, our CP2Rec consists of three customized
modules: 1) a feature segmentation module is used to screen a set of

potential confounding proxy features from input features based on
expert knowledge and serve as prior knowledge for model training;
2) a bias disentangling module is guided by these priors and lever-
ages the orthogonality constraints between the representations to
facilitate the model to remove the encoding of biased information
from feature embeddings; and 3) an accuracy-bias tradeoff module
aims to introduce an auxiliary unbiased loss to synergize with the
original biased loss to extract the embeddings corresponding to
the beneficial bias information from the embeddings of confound-
ing proxies. They are then used in the inference stage together
with the above-purified feature embeddings. Intuitively, we use
the confounding proxy features in the second module to force the
model to learn the bias-independent feature embeddings and re-
cover the beneficial bias information in the feature embeddings in
the third module, so as to achieve the accuracy-bias tradeoff. Finally,
we conduct extensive offline and online experiments to verify the
effectiveness of our CP2Rec.

2 RELATEDWORK
In this section, we briefly review some relevant works on two
research topics, including debiased learning with and without an
unbiased feedback subset in recommender systems.
Debiased Learning with an Unbiased Feedback Subset. Com-
pared with the possible risks of controlling the user-induced biases
by intervening with the users, it is more feasible and secure to
alleviate the system-induced biases by replacing the deployed rec-
ommendation policy [21]. By adopting a special uniform policy
that does not rely on the recommendation policy for item deliv-
ery, but randomly selects and ranks the candidate set, a subset of
unbiased feedback that can act as a good unbiased proxy can be
collected [14, 16]. Therefore, existing work on this research topic
aims at how to more effectively utilize a subset of unbiased feed-
back to guide an ideal model training and can be mainly divided
into three routes, including inverse propensity score-based meth-
ods, multi-stage training-based methods, and joint training-based
methods. An inverse propensity score-based method calculates the
weight of each feedback through the above subsets and integrates
it into the optimization objective for calibration of biased distri-
butions [14, 15, 29, 34, 40]. A multi-stage training-based method
utilizes some effective training frameworks that alternately use the
biased and unbiased feedback to jointly learn a better set of unbi-
ased parameters [4, 7, 11, 35]. A joint training-based method trains
separate models for biased and unbiased feedback, respectively, and
customizes some alignment strategies to directly constrain the joint
learning of both [2, 14]. Different from these existing works, our
CP2Rec does not rely on an unbiased feedback subset and expects to
achieve an accuracy-bias tradeoff rather than arbitrarily removing
all the biases.
Debiased Learning without an Unbiased Feedback Subset.
Since collecting a subset of unbiased feedback will usually hurt the
user experience and the platform revenue in some practical appli-
cations, the setting of this research topic is to consider debiasing
learning when a subset of unbiased feedback is not available. Due to
the lack of guidance from unbiased information, most of the existing
work needs to make some prior modeling assumptions about the
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biases or introduce some specific techniques to ensure the unbiased-
ness of the optimization objective [9, 13, 19, 20, 22, 23, 38, 41]. They
can be mainly divided into three routes, including inverse propen-
sity score-based methods, ideal unbiased loss optimization-based
methods, and disentangled representation-basedmethods. Note that
unlike when an unbiased feedback subset is available, an inverse
propensity score-based method now needs to estimate the weights
based on some variables related to the users and items [2, 12]. An
ideal unbiased loss optimization-based method aims to use some
theoretical tools to derive a tractable unbiased loss or a generaliza-
tion error upper bound for a specific biased problem so that it can be
directly optimized [27, 28, 33, 37]. A disentangled representation-
based method constrains the model from accurately identifying
the biased and unbiased information from the input features and
encoding them in the corresponding biased and unbiased compo-
nents to alleviate the impact of biases on the obtained represen-
tations [17, 18, 36, 42]. Our CP2Rec falls into the last route. But
different from existing works, we introduce the confounding proxy
priors to ease the learning burden of the model, and further drive
the accuracy-bias tradeoff to avoid some possible limitations in
these works, such as removing some beneficial biases.

3 PRELIMINARIES
In this section, we formally define the accuracy-bias tradeoff recom-
mendation task with the necessary notations when a subset of unbi-
ased feedback is not available. A typical multimedia recommender
system usually consists of a set of𝑀 users U = {𝑢1, 𝑢2, . . . , 𝑢𝑀 }, a
set of𝑁 itemsV = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }, a set of 𝐽 fields of user attributes
A = {A1,A2, . . . ,A 𝐽 } and a set of 𝐾 fields of item attributes
B = {B1,B2, . . . ,B𝐾 }, and a set of 𝑅 fields of contextual features
denoted as C = {C1, C2, . . . , C𝑅}, where item attributes include text
and images information, etc. LetS = {(x1, 𝑦1), (x2, 𝑦2), . . . , (x𝐼 , 𝑦𝐼 )}
denote a set of 𝐼 user-item feedback and their corresponding labels,
an instance of which can be represented as follows,

x𝑖 =
[
𝑢𝑖 , 𝑣𝑖 ,A𝑢𝑖 ,B𝑣𝑖 ,C

𝑖
]
, (1)

where 𝑢𝑖 ∈ U, 𝑣𝑖 ∈ V and C𝑖 ⊂ C denote the user, item, and
context involved in the 𝑖th instance, and A𝑢𝑖 ⊂ A and B𝑣𝑖 ⊂ B
are a list of attributes associated with 𝑢𝑖 and 𝑣𝑖 , respectively. Since
only biased feedback is available, we have S ∈ P(𝑥,𝑦), where P is
a biased feedback distribution. It can be decomposed into two parts
containing the beneficial or harmful biases, respectively, i.e., P =

(P𝑏 ,Pℎ). Let Q(𝑥,𝑦) denote the unbiased feedback distribution,
and the goal of accuracy-bias tradeoff recommendation is to train a
recommendation model based on a set of biased feedback S, which
can be adapted to a joint distribution incorporating the beneficial
biases in the unbiased nature Q∗ = (P𝑏 ,Q), so as to achieve a more
ideal user experience.

4 ACCURACY-BIAS TRADEOFF
RECOMMENDATION VIA CONFOUNDING
PROXY PRIORS

4.1 Architecture
The confounding proxy priors-based accuracy-bias tradeoff recom-
mendation framework, or CP2Rec for short, is shown in Figure 2.

Given a current instance (x𝑖 , 𝑦𝑖 ), the feature partitioning module
divides the input features into two sets based on expert knowledge,
including a set of potentially confounding proxy features x𝑐

𝑖
and

the remaining features x𝑧
𝑖
, i.e., x𝑖 = {x𝑐

𝑖
, x𝑧
𝑖
}, After obtaining the

two feature sets, they pass through the embedding layer to obtain
their respective low-dimensional dense representations, i.e., c𝑖 and
z𝑖 . Then, in the bias disentangling module, based on the guidance
of confounding proxy embeddings c𝑖 , we can introduce the purifi-
cation operator with some orthogonal constraints to encourage
the model to avoid encoding the biased information in the feature
embeddings z𝑖 as much as possible. To be compatible with various
orthogonal constraints, we use z′

𝑖
to denote the purified feature

embeddings. In the accuracy-bias tradeoff module, we introduce an
extraction operator for the confounding proxy embeddings c𝑖 in an
attempt to distinguish the embeddings c′

𝑖
driven by the beneficial

bias information. To ensure that the model reasonably achieves the
above goals, we additionally introduce an unbiased loss to cooper-
ate with the original biased loss to form an effective joint training
paradigm, where the unbiased loss and biased loss are responsible
for the combination of the purified feature embedding with the
confounding proxy embedding and the beneficial bias information
embedding, respectively, i.e., [c𝑖 , z′𝑖 ] and [c

′
𝑖
, z′
𝑖
]. Therefore, the final

optimization objective function of our CP2Rec can be expressed as
follows,

min
𝜃

L𝐶𝑃2𝑅𝑒𝑐 = 𝛾L𝐵 + L𝑈 + 𝛽L𝑂 + 𝜆∥𝜃 ∥, (2)

where L𝐵 , L𝑈 , and L𝑂 denote the original biased loss, the unbi-
ased loss for the accuracy-bias tradeoff module and the orthogonal
constraint for the bias disentanglingmodule, respectively, and 𝜆 and
∥𝜃 ∥ are the tradeoff parameter and the regularization terms. Next,
we describe each module in detail based on the training process.

4.2 The Feature Partitioning Module
As shown at the bottom of Figure 2, after receiving all the input
features x𝑖 , we need to filter out a set of potential confounding
proxy features x𝑐

𝑖
based on expert knowledge. Since we focus on

mitigating the system-induced biases and expect the model to pre-
serve the beneficial bias associated with the biasedness of user
decision-making behavior, we can define the selection mechanism
for the confounding proxy features as follows:

• Targeted examination of statistical features associated with
the items. Intuitively, the statistical features related to an
item are more likely to be captured by the recommendation
model, thus affecting the exposure probability of this item
in the subsequent recommendation policy.

• Check the contextual feature associated with user decision-
making behavior and filter out a relatively reasonable subset
from it. This means that a reasonably biased decision-making
behavior is also expected by the user experience, and the
features related to it are more likely to have beneficial biased
information and should be used as prior knowledge.

Based on the above principles, an example of the confounding proxy
features used in the experiments is shown in Table 1. Note that
although it is difficult to define all the features of the confounding
proxy in practice, using only a subset of them can also calibrate the
learning of the model well.
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Beneficial Bias

Harmful Bias

Concatenate

Confounding Proxy Features Common Features

Embedding Layer

……

…

Bias Disentangling 
Module

Accuracy-Bias 
Tradeoff Module

expected rep biased rep

unbiased loss biased loss

Main Model Main ModelShared Parameters Subtraction

Purification Operator

Refining Operator

after purify

after refine

Feature Partitioning 
Module

Figure 2: The architecture of the confounding proxy priors-based accuracy-bias tradeoff recommendation (CP2Rec) framework
consists of three modules: 1) the feature partitioning module is used to filter out a subset of features from the input features
based on expert knowledge, and this subset of features acts as the confounding proxy, explicitly responsible for the system-
induced biases; 2) the bias disentangling module aims to utilize the embedding obtained by the confounding proxy to remove
as much the bias-related information encoding as possible from the embedding driven by the remaining features to achieve the
goal of debiasing; and 3) the accuracy-bias tradeoff module introduces an auxiliary unbiased loss that effectively synergizes
with the original biased loss to induce the beneficial bias information from the embeddings of the confounding proxy and
combine them with the purified feature embeddings for the inference stage.

Table 1: An example of confounding proxy features included
in the online financial recommendation platform used in the
experiments.

Feature Category Example
Item-related item ctr, item cvr, item display style, etc.

Context-related exposure position, device, market condition, etc.

4.3 The Bias Disentangling Module
After obtaining the two feature subsets from the feature partition-
ing module, i.e., x𝑐

𝑖
and x𝑧

𝑖
, we can use a feature embedding layer

common in CTR tasks to encode their representations, i.e., c𝑖 and
z𝑖 . In this module, we propose to use a purification operator with

the orthogonal constraint to explore the guidance of confounding
proxy embeddings c𝑖 to remove the encoding of biased informa-
tion from feature embeddings z𝑖 . As shown on the right side of
Figure 2, the idea behind this module is to obtain purified feature
embeddings z′

𝑖
that avoid the influence of biased information. To

examine the compatibility of our CP2Rec in the experiments, we
consider three different implementations of orthogonal constraints
in the purification operation and referred to the corresponding
three variants as CP2Rec-COS, CP2Rec-PROJ, and CP2Rec-SOLVE.
For ease of understanding, we give schematic diagrams of different
purification operators in Figure 3.

4.3.1 Regularizer-Based Orthogonal Constraints. First, as shown on
the left side of Figure 3, we consider a regularizer-based implemen-
tation. Specifically, to remove the encoding of bias information from
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ProjectionRegularization MI Solver

Figure 3: Schematic diagram of different purification opera-
tors.

z𝑖 , an intuitive idea is to constrain the orthogonality between z𝑖 and
c𝑖 , which can be equivalent to constraining the cosine similarity
between two representations to approach zero,

𝑐𝑜𝑠 (z𝑖 , c𝑖 ) → 0. (3)

Therefore, we can get the orthogonality constraint corresponding
to the purification operation, where 𝑎𝑏𝑠 (·) is an absolute value
operation.

L𝑂 =
1
𝐼

𝐼∑︁
𝑖=1

𝑎𝑏𝑠

(
z𝑖 · c𝑖
|z𝑖 | |c𝑖 |

)
. (4)

4.3.2 Projection-Based Orthogonal Constraints. Second, as shown
in the middle of Figure 3, we consider projection-based imple-
mentation [25]. Since directly constraining the similarity between
the representations in a high-dimensional space can be difficult,
projection-based operation first projects the feature embedding
z𝑖 into the confounding proxy embedding c𝑖 , so that the biased
information in z𝑖 can be induced,

zc = 𝑝𝑟𝑜 𝑗 (z𝑖 , c𝑖 ) =
z𝑖 · c𝑖
|c𝑖 |

· c𝑖
|c𝑖 |

. (5)

We then remove this bias component zc from z𝑖 to obtain a purified
feature embedding,

z′𝑖 = z𝑖 − zc . (6)
Note that in this case there is no explicit orthogonality constraint
lossL𝑂 , and the purified feature embeddings z′

𝑖
are updated through

subsequent loss functions.

4.3.3 Orthogonal Constraints with Mutual Information Solver. Fi-
nally, as shown on the right side of Figure 3, we consider implemen-
tation based on mutual information solver. Based on the perspective
of information theory, the uncorrelation between two representa-
tions means that the mutual information between them is zero [31].

𝐼 (z𝑖 , c𝑖 ) → 0. (7)

Therefore, we can directly use some existing mutual information
solvers to implement this constraint, and we use CLUB [6] as an
example in our experiments, where 𝑞𝜃 (·|·) is a variational distribu-
tion.

L𝑂 =
1
𝐼

𝐼∑︁
𝑖=1

log𝑞𝜃 (c𝑖 |z𝑖 ) −
1
𝐼

𝐼∑︁
𝑗=1

log𝑞𝜃 (c𝑗 |z𝑖 )
 . (8)

4.4 The Accuracy-Bias Tradeoff Module
After the bias disentangling module, the feature embedding z𝑖 is pu-
rified to avoid encoding the biased information as much as possible.
For the convenience of description, we denote the feature embed-
ding at this time as z′

𝑖
, and note that since the feature embedding

is not explicitly modified in Section 4.3.1 and 4.3.3, there is z′
𝑖
= z𝑖 .

Since only biased feedback is available during training, an original
loss function L𝐵 is biased, and we use a combination of the con-
founding proxy embeddings and the purified feature embeddings
for prediction,

𝑦𝑖𝐵 =𝑓
(
[c𝑖 , z′𝑖 ], 𝜃

)
, (9)

L𝐵 = L(𝑦𝑖𝐵, 𝑦𝑖 ), (10)

where 𝑓 is a predictive mapping function and 𝜃 is the model pa-
rameters. To recover the beneficial bias information in the feature
embeddings, in this module, we propose a refining module to cap-
ture the beneficial bias information driven by the confounding
proxy embeddings,

c′𝑖 = 𝑔 (c𝑖 ) = 𝜎 (W ∗ c𝑖 + b), (11)

where W is a weight matrix, b is a bias vector, and 𝜎 (·) is an ac-
tivation function. To constrain the c′

𝑖
obtained by Equation 11 to

accurately capture the beneficial bias information, we introduce
an auxiliary unbiased loss function L𝑈 and make predictions by
combining c′

𝑖
with purified feature embeddings z′

𝑖
,

𝑦𝑖𝑈 =𝑓
(
[c′𝑖 , z

′
𝑖 ], 𝜃

)
. (12)

L𝑈 = L(𝑦𝑖𝑈 , 𝑦𝑖 ) . (13)

Note that many unbiased loss functions have been proposed in exist-
ingwork, andwe use unbiased optimizationwith inverse propensity
score (IPS) [28] as an example in our experiments. We synergize
the two loss functions by sharing model parameters to accurately
identify the desired c′

𝑖
from the confounding proxy embeddings c𝑖 .

The idea behind this module is to not only guarantee the correct
learning of purified feature embeddings z′

𝑖
and confounding proxy

embeddings c𝑖 but also extract information from the latter that
is beneficial to predict users’ biased decisions in unbiased scenar-
ios. Furthermore, we use Equation 12 as the final prediction at the
inference stage to achieve the accuracy-bias tradeoff.

5 EMPIRICAL EVALUATIONS
In this section, we conduct experiments with the aim of answering
the following four key questions.
• RQ1: How does our CP2Rec perform compared to the baselines?
• RQ2: What is the role of each module in our CP2Rec?
• RQ3: What are the characteristics of the representations obtained
in our CP2Rec?

• RQ4: How effective is our CP2Rec in an online deployment?

5.1 Experimental Setup
5.1.1 Datasets. In order to evaluate the ideal performance of the
model in alleviating the system-induced biases, we need a test set
containing unbiased feedback to simulate the ideal feedback distri-
bution. To our best knowledge, there is only one publicly available
dataset in the existing literature that satisfies this property with
the required multimodal features, i.e., KuaiRec1 [8]. KuaiRec is
collected from the recommendation logs of Kuaishou2, a Chinese
video-sharing platform, which contains a traditionally biased feed-
back subset and an almost fully-observed feedback subset that can
1https://kuairec.com/
2https://www.kuaishou.com/en
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approximate an unbiased distribution. For a more comprehensive
evaluation, we also use a real product dataset in our experiments,
i.e., Product. The Product is a subset sampled from the log data
collected from the homepage recommendation business of a large-
scale online financial management platform in China. Depending
on the collection process, it also contains a biased feedback subset
and an unbiased feedback subset and provides multimodal features
such as text and images.

5.1.2 Dataset Preprocessing. Following the settings of previous
works [17, 18], we split the biased feedback subset into training
and validation sets in a ratio of 8:2 to strictly obey the case where
an unbiased feedback subset is not available. We use the entire
unbiased feedback subset as the test set for unbiased evaluation of
the model. In addition, we select 11 and 14 features from the item-
related statistical feature set as the confounding proxy features,
respectively. We summarize the statistics of the two processed
datasets in Table 2.

Table 2: Statistics of the processed datasets.

Dataset KuaiRec Product
#User 7,176 1,020,345
#Item 10,728 1,549
#Training Instance 10,024,644 8,820,589
#Validation Instance 2,506,162 2,192,537
#Test Instance 4,676,570 1,168,594
#User Attribute 31 349
#Item Attribute 57 176
#Contextual Feature - 29
#Confounding Proxy Feature 11 14

5.1.3 Baselines. We select the representative methods among the
three routes of debiased learning without an unbiased feedback
subset, which are summarized in Section 2. For the first route, we
use the inverse propensity score (IPS) [29] and the self-normalized
IPS (SNIPS) [30] as our baselines since they are the most common
baseline candidates in debiasing learning. For the second route, we
select the relevance-maximization optimization (Rel) [28] as our
baseline due to its demonstrated performance benefits in previous
works [17, 26]. For the third route, we choose two recent represen-
tative methods as our baselines, i.e., CVIB [36] and DIB [18]. CVIB
uses the information bottleneck to constrain the model to learn the
balanced feature information between the observed and unobserved
feedback, and DIB prompts the model to accurately distinguish the
information required by the biased and unbiased components from
the input features, respectively. Since most debiasing methods are
model-agnostic, in order to evaluate the generalization of all the
methods, we adopt two of the most common CTR models as the
backbones, i.e., neural collaborative filtering (NCF) [10] and deep
& cross network (DCN) [10], i.e., each of these methods has two
corresponding versions based on different backbones.

5.1.4 Evaluation Metrics. Following the setup employed in previ-
ous works [14, 39], we evaluate the performance of CTR prediction
via two widely used metrics, i.e., the area under the ROC curve
(AUC) and the negative logarithmic loss (NLL). We choose AUC as

our main evaluation metric because it is one of the most important
metrics in the industry and previous works on debiasing. Note that
for both metrics, higher values indicate better results.

5.1.5 Implementation Details. We implement all the methods on
TensorFlow 1.153 with the Adam optimizer and the embedding
dimension fixed at 10. In order to speed up the tuning process, we
use the Bayesian optimization library Optuna4 [1] for the dynamic
search of hyperparameters. We also adopt an early stopping mecha-
nism with patience of 5 to avoid overfitting to the training set. The
range of the values of the hyper-parameters is shown in Table 3.

Table 3: Hyper-parameters tuned in the experiments.

Name Range Functionality

𝜆
{
1𝑒−6, 1𝑒−5 · · · 1𝑒−2

}
regularization

𝑙𝑟
{
1𝑒−4, 5𝑒−4, 1𝑒−3 · · · 1𝑒−2

}
learning rate

𝑏𝑠
{
27, 28, · · · 210

}
batch size

𝛾
{
1𝑒−5, 1𝑒−5 · · · 1𝑒−1

}
loss weight

𝛽
{
1𝑒−5, 1𝑒−5 · · · 1𝑒−1

}
loss weight

5.2 RQ1: Performance Comparison
We report the overall performance comparison in Table 4 and 5.
From the results in Table 4 and 5, we can have the following ob-
servations: 1) All the debiasing methods perform better than the
original backbone. For example, DIB-NCF increase AUC by 0.02
compared with NCF on KuaiRec. This further necessitates our re-
search here; and 2) Compared with other baselines, our CP2Rec
performs best despite different datasets and backbones in both
AUC and NLL. With different purification operators, CP2Rec per-
forms consistently well compared with other debiasing baselines.
However, the best operator varies with the dataset and backbone.
Specifically, with NCF, CP2Rec-PROJ is superior to other methods
on the KuaiRec dataset, while CP2Rec-SOLVE is the best on the
product dataset. With DCN, CP2Rec-COS is the best on KuaiRec
dataset, and CP2Rec-PROJ achieves better on the product dataset.
One possible reason for this discrepancy is that when the backbone
model is relatively simple, no matter what degree of purification
operator can be trained well, thus more complex variants (e.g.,
PROJ or SOLVE) can show a better result. But when the backbone
model is more complex, some complex purification operators may
sometimes not be well trained, and relatively simple purification
operators may perform better. Note that all the purification opera-
tors are easily plug-and-play in our framework, which verifies the
effectiveness of our framework.

5.3 RQ2: Ablation Study of CP2Rec
In this subsection, we conduct the ablation study over the modules
of our framework, which is demonstrated in Table 6. Here, we
compare it with other two methods: (i) w/o ABT, which is the
CP2Rec-COS-NCFmodel without accuracy-bias tradeoffmodule; (ii)
w/oABT, BD,which is themodel with neither accuracy-bias tradeoff
3https://www.tensorflow.org
4https://optuna.org/
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Table 4: Comparison results of unbiased evaluation using
NCF as the backbone model, where the best results and the
second best results are marked in bold and underlined, re-
spectively. Note that AUC is the main evaluation metric, and
∗ indicates a significance level of 𝑝 ≤ 0.05 based on a two-
sample t-test between our method and the best baseline.

Dataset KuaiRec Product

Metrics AUC↑ NLL↑ AUC↑ NLL↑

NCF 0.8246 -0.6899 0.8601 -0.6532

IPS-NCF 0.8273 -0.6890 0.8685 -0.6538
SNIPS-NCF 0.8144 -0.6898 0.8642 -0.6522

CVIB-NCF 0.8265 -0.6897 0.8637 -0.6539
Rel-NCF 0.8388 -0.6860 0.8804 -0.6502
DIB-NCF 0.8456 -0.6902 0.8835 -0.6503

CP2Rec-COS-NCF 0.8483 -0.6861 0.8860 -0.6415
CP2Rec-PROJ-NCF 0.8492∗ -0.6843∗ 0.8876 -0.6381
CP2Rec-SOLVE-NCF 0.8491 -0.6843 0.8898∗ -0.6375∗

Table 5: Comparison results of unbiased evaluation using
DCN as the backbone model, where the best results and the
second best results are marked in bold and underlined, re-
spectively. Note that AUC is the main evaluation metric, and
∗ indicates a significance level of 𝑝 ≤ 0.05 based on a two-
sample t-test between our method and the best baseline.

Dataset KuaiRec Product

Metrics AUC↑ NLL↑ AUC↑ NLL↑

DCN 0.8257 -0.6900 0.8711 -0.6538

IPS-DCN 0.8239 -0.6903 0.8744 -0.6524
SNIPS-DCN 0.8028 -0.6905 0.8759 -0.6517

CVIB-DCN 0.8241 -0.6898 0.8776 -0.6507
Rel-DCN 0.8311 -0.6885 0.8838 -0.6495
DIB-DCN 0.8455 -0.6891 0.8854 -0.6480

CP2Rec-COS-DCN 0.8478∗ -0.6849 0.8918 -0.6362
CP2Rec-PROJ-DCN 0.8461 -0.6858 0.8922∗ -0.6445
CP2Rec-SOLVE-DCN 0.8474 -0.6846∗ 0.8903 -0.6352∗

module nor bias disentangling module. From the results, we can
observe that without ABT, the AUC decreased by 0.0022, while AUC
decreased by 0.0028 without ABT and BD. The observation validates
the effectiveness of the designed modules in the framework.

5.4 RQ3: Visualization of the Representations
To further verify whether our CP2Rec can effectively distinguish
between biased and unbiased information, we use t-SNE [32] to
visualize the obtained representations and observe their character-
istics. We demonstrate the representations for all the instances on
the Product dataset using NCF as the backbone setting. As shown

Table 6: Results of the ablation studies on KuaiRec using NCF
as the backbone setting, where the best results are marked
in bold.

Dataset KuaiRec

Method CP2Rec-COS-NCF w/o ABT w/o ABT, BD

AUC↑ 0.8483 0.8461 0.8456
NLL↑ -0.6861 -0.6870 -0.6902

in Figure 4, no matter which variant, there is a clear boundary
between the blue points representing the unbiased components
𝑧 and the red points representing the biased components 𝑐 . This
indicates that our CP2Rec can accurately capture both the biased
components and unbiased components. Also, note that some of
the red points are closer to the blue region than the rest of the red,
which may be the beneficial bias identified by the model that is
expected to be preserved.

5.5 RQ4: Results of the Online Deployment
We deploy our CP2Rec in an online financial recommendation
platform, which serves millions of daily active users. All the models
are trained in a single cluster, where each node contains 96 core
Intel(R) Platinum 8255C CPU, 256GB RAM as well as 8 NVIDIA
TESLA A100 GPU cards. We conduct the A/B test for three weeks,
and two commonly used online evaluation metrics, CLPM (i.e.,

#𝑐𝑙𝑖𝑐𝑘
#𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ), COPM (i.e., #𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

#𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ), are used. Besides, we also
use purchase amount per mile (PAPM) defined as #𝑎𝑚𝑜𝑢𝑛𝑡

#𝑖𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 to
evaluate the model in the financial recommendation platform. The
daily improvements are illustrated in Figure 5. On average, we
get improvements in all three metrics as shown in Table 7, which
further verifies the effectiveness of our method. Moreover, we also
investigate how the exposure probability of the top 40 popular
items varies online. From Figure 6, we observe that items in the
top list are supposed to be suppressed popularity, while others are
given more impressions leading to alleviating the bias problem in
this industry recommender system.

Table 7: Average improvement of our CP2Rec in a three-week
online A/B test.

Method CTPM (imp.) COPM (imp.) PAPM (imp.)

CP2Rec-COS 2.47% 5.10% 5.74%
CP2Rec-PROJ 2.89% 6.19% 5.88%
CP2Rec-SOLVE 2.91% 7.03% 7.97%

6 CONCLUSIONS AND FUTUREWORKS
In this paper, we introduce the confounding proxy features as prior
knowledge for model training in the debiased recommendation and
propose a novel debiasing framework, CP2Rec. In our CP2Rec, we
first leverage these confounding proxy features in the bias disen-
tangling module to guide the model to learn the bias-independent
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(a) CP2Rec-COS (b) CP2Rec-PROJ (c) CP2Rec-SOLVE

Figure 4: Visualization of the biased component 𝑐 and the unbiased component 𝑧, in which the red and blue points are used to
denote the biased component 𝑐 and the unbiased component 𝑧, respectively.
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(a) CP2Rec-COS
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(b) CP2Rec-PROJ
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(c) CP2Rec-SOLVE

Figure 5: Improvements of our CP2Rec variants compared with the base model in the online A/B test, including total clicks per
mille (CLPM), total conversions per mille (COPM) and purchase amount per mille (PAPM).

(a) CP2Rec-COS (b) CP2Rec-PROJ (c) CP2Rec-SOLVE

Figure 6: Difference in the exposure probability of the top 40 popular items after deploying our CP2Rec, where the item IDs on
the x-axis have been sorted in descending order according to their popularity.

feature embeddings. Then, in the accuracy-bias tradeoff module,
we recover the beneficial bias information from the feature embed-
dings with the help of an unbiased loss, thereby achieving a more
reasonable accuracy-bias tradeoff for the multimedia recommenda-
tion. Finally, we conduct extensive experiments on a public dataset,
a real product dataset, and an online AB test to demonstrate the
effectiveness of our CP2Rec.

For future work, we plan to design some automated selection
mechanisms for the confounding proxy features. We also plan to

explore more orthogonal constraints between the representations
to further improve the effectiveness of removing bias effects. In
addition, we are also interested in trying some new strategies to
assist the model in recovering beneficial bias information.

ACKNOWLEDGMENTS
We thank the support of the National Natural Science Foundation
of China Nos. 61836005, 62272315, and 62172283.

1002



Prior-Guided Accuracy-Bias Tradeoff Learning for CTR Prediction in Multimedia Recommendation MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada

REFERENCES
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. 2623–2631.

[2] Stephen Bonner and Flavian Vasile. 2018. Causal embeddings for recommendation.
In Proceedings of the 12th ACM Conference on Recommender Systems. 104–112.

[3] Feiyu Chen, Junjie Wang, Yinwei Wei, Hai-Tao Zheng, and Jie Shao. 2022. Break-
ing isolation: Multimodal graph fusion for multimedia recommendation by edge-
wise modulation. In Proceedings of the 30th ACM International Conference on
Multimedia. 385–394.

[4] Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli
Lin, and Keping Yang. 2021. AutoDebias: Learning to debias for recommendation.
In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 21–30.

[5] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan
He. 2023. Bias and debias in recommender system: A survey and future directions.
ACM Transactions on Information Systems 41, 3 (2023), 1–39.

[6] Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence
Carin. 2020. CLUB: A contrastive log-ratio upper bound of mutual information. In
Proceedings of the 37th International Conference on Machine Learning. 1779–1788.

[7] Sihao Ding, Fuli Feng, Xiangnan He, Jinqiu Jin, Wenjie Wang, Yong Liao, and
Yongdong Zhang. 2022. Interpolative distillation for unifying biased and debiased
recommendation. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 40–49.

[8] Chongming Gao, Shijun Li, Wenqiang Lei, Jiawei Chen, Biao Li, Peng Jiang,
Xiangnan He, Jiaxin Mao, and Tat-Seng Chua. 2022. KuaiRec: A fully-observed
dataset and insights for evaluating recommender systems. In Proceedings of the
31st ACM International Conference on Information and Knowledge Management.
540–550.

[9] PremGopalan, JakeMHofman, and DavidM Blei. 2015. Scalable recommendation
with hierarchical Poisson factorization. In Proceedings of the 31st Conference on
Uncertainty in Artificial Intelligence. 326–335.

[10] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
2017. Neural collaborative filtering. In Proceedings of the ACM Web Conference
2017. 173–182.

[11] Haoxuan Li, Yanghao Xiao, Chunyuan Zheng, and Peng Wu. 2023. Balancing un-
observed confounding with a few unbiased ratings in debiased recommendations.
In Proceedings of the ACM Web Conference 2023. 1305–1313.

[12] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Model-
ing user exposure in recommendation. In Proceedings of the ACMWeb Conference
2016. 951–961.

[13] Chen Lin, Dugang Liu, Hanghang Tong, and Yanghua Xiao. 2022. Spiral of silence
and its application in recommender systems. IEEE Transactions on Knowledge
and Data Engineering 34, 6 (2022), 2934–2947.

[14] Dugang Liu, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Weike Pan, and
ZhongMing. 2020. A general knowledge distillation framework for counterfactual
recommendation via uniform data. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval. 831–840.

[15] Dugang Liu, Pengxiang Cheng, Zinan Lin, Jinwei Luo, Zhenhua Dong, Xiuqiang
He, Weike Pan, and Zhong Ming. 2022. KDCRec: Knowledge distillation for
counterfactual recommendation via uniform data. IEEE Transactions on Knowledge
and Data Engineering (2022). https://doi.org/10.1109/TKDE.2022.3199585

[16] Dugang Liu, Pengxiang Cheng, Zinan Lin, Xiaolian Zhang, Zhenhua Dong, Rui
Zhang, Xiuqiang He, Weike Pan, and Zhong Ming. 2023. Bounding system-
induced biases in recommender systems with a randomized dataset. ACM Trans-
actions on Information Systems 41, 4 (2023), 1–26.

[17] Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike
Pan, and Zhong Ming. 2021. Mitigating confounding bias in recommendation
via information bottleneck. In Proceedings of the 15th ACM Conference on Recom-
mender Systems. 351–360.

[18] Dugang Liu, Pengxiang Cheng, Hong Zhu, Zhenhua Dong, Xiuqiang He, Weike
Pan, and ZhongMing. 2023. Debiased representation learning in recommendation
via information bottleneck. ACMTransactions on Recommender Systems 1, 1 (2023),
1–27.

[19] Dugang Liu, Chen Lin, Zhilin Zhang, Yanghua Xiao, and Hanghang Tong. 2019.
Spiral of silence in recommender systems. In Proceedings of the 12th ACM Inter-
national Conference on Web Search and Data Mining. 222–230.

[20] Dugang Liu, Yang Qiao, Xing Tang, Liang Chen, Xiuqiang He, Weike Pan, and
Zhong Ming. 2023. Self-sampling training and evaluation for the accuracy-bias
tradeoff in recommendation. In International Conference on Database Systems for
Advanced Applications. 580–592.

[21] David C. Liu, Stephanie Rogers, Raymond Shiau, Dmitry Kislyuk, Kevin C. Ma,
Zhigang Zhong, Jenny Liu, and Yushi Jing. 2017. Related pins at pinterest: The
evolution of a real-world recommender system. In Companion Proceedings of the
ACM Web Conference 2017. 583–592.

[22] Yiming Liu, Xuezhi Cao, and Yong Yu. 2016. Are you influenced by others when
rating? Improve rating prediction by conformity modeling. In Proceedings of the
10th ACM Conference on Recommender Systems. 269–272.

[23] Benjamin M Marlin and Richard S Zemel. 2009. Collaborative prediction and
ranking with non-random missing data. In Proceedings of the 3rd ACM Conference
on Recommender Systems. 5–12.

[24] ZongshenMu, Yueting Zhuang, Jie Tan, JunXiao, and Siliang Tang. 2022. Learning
hybrid behavior patterns for multimedia recommendation. In Proceedings of the
30th ACM International Conference on Multimedia. 376–384.

[25] Qi Qin, Wenpeng Hu, and Bing Liu. 2020. Feature projection for improved text
classification. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. 8161–8171.

[26] Yi Ren, Hongyan Tang, Jiangpeng Rong, and Siwen Zhu. 2023. Unbiased pair-
wise learning from implicit feedback for recommender systems without biased
variance control. arXiv preprint arXiv:2304.05066 (2023).

[27] Yuta Saito. 2020. Asymmetric tri-training for debiasing missing-not-at-random
explicit feedback. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 309–318.

[28] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.
2020. Unbiased recommender learning from missing-not-at-random implicit
feedback. In Proceedings of the 13th ACM International Conference on Web Search
and Data Mining. 501–509.

[29] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations as treatments: Debiasing learning
and evaluation. In Proceedings of the 33rd International Conference on Machine
Learning. 1670–1679.

[30] Adith Swaminathan and Thorsten Joachims. 2015. The self-normalized estimator
for counterfactual learning. In Proceedings of the 29th International Conference on
Neural Information Processing Systems. 3231–3239.

[31] Naftali Tishby, Fernando C Pereira, and William Bialek. 1999. The information
bottleneck method. In Proceedings of the 37th Annual Allerton Conference on
Communications, Control and Computing. 368–377.

[32] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of Machine Learning Research 9, 11 (2008).

[33] Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua.
2021. Clicks can be cheating: Counterfactual recommendation for mitigating
clickbait issue. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1288–1297.

[34] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2019. Doubly robust joint
learning for recommendation on data missing not at random. In Proceedings of
the 36th International Conference on Machine Learning. 6638–6647.

[35] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2021. Combating selection
biases in recommender systems with a few unbiased ratings. In Proceedings of
the 14th ACM International Conference on Web Search and Data Mining. 427–435.

[36] Zifeng Wang, Xi Chen, Rui Wen, Shao-Lun Huang, Ercan E Kuruoglu, and Yefeng
Zheng. 2020. Information theoretic counterfactual learning from missing-not-at-
random feedback. In Proceedings of the 34th International Conference on Neural
Information Processing Systems. 1854–1864.

[37] Tianxin Wei, Fuli Feng, Jiawei Chen, Ziwei Wu, Jinfeng Yi, and Xiangnan He.
2021. Model-agnostic counterfactual reasoning for eliminating popularity bias
in recommender system. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 1791–1800.

[38] Haiqin Yang, Guang Ling, Yuxin Su, Michael R Lyu, and Irwin King. 2015. Boost-
ing response aware model-based collaborative filtering. IEEE Transactions on
Knowledge and Data Engineering 27, 8 (2015), 2064–2077.

[39] Bowen Yuan, Jui-Yang Hsia, Meng-Yuan Yang, Hong Zhu, Chih-Yao Chang, Zhen-
hua Dong, and Chih-Jen Lin. 2019. Improving ad click prediction by considering
non-displayed events. In Proceedings of the 28th ACM International Conference on
Information and Knowledge Management. 329–338.

[40] Shuxi Zeng,Murat Ali Bayir, Joseph J Pfeiffer III, Denis Charles, and Emre Kiciman.
2021. Causal transfer random forest: Combining logged data and randomized
experiments for robust prediction. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining. 211–219.

[41] Xiaoying Zhang, Junzhou Zhao, and John CS Lui. 2017. Modeling the assimilation-
contrast effects in online product rating systems: Debiasing and recommenda-
tions. In Proceedings of the 11th ACMConference on Recommender Systems. 98–106.

[42] Yu Zheng, Chen Gao, Xiang Li, Xiangnan He, Yong Li, and Depeng Jin. 2021.
Disentangling user interest and conformity for recommendation with causal
embedding. In Proceedings of the ACM Web Conference 2021. 2980–2991.

1003

https://doi.org/10.1109/TKDE.2022.3199585

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Accuracy-Bias Tradeoff Recommendation via Confounding Proxy Priors
	4.1 Architecture
	4.2 The Feature Partitioning Module
	4.3 The Bias Disentangling Module
	4.4 The Accuracy-Bias Tradeoff Module

	5 Empirical Evaluations
	5.1 Experimental Setup
	5.2 RQ1: Performance Comparison
	5.3 RQ2: Ablation Study of CP2Rec
	5.4 RQ3: Visualization of the Representations
	5.5 RQ4: Results of the Online Deployment

	6 Conclusions and Future Works
	Acknowledgments
	References



