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ABSTRACT
Most methods for context-aware recommendation focus on improv-
ing the feature interaction layer, but overlook the embedding layer.
However, an embedding layer with random initialization often suf-
fers in practice from the sparsity of the contextual features, as well
as the interactions between the users (or items) and context. In
this paper, we propose a novel user-event graph embedding learn-
ing (UEG-EL) framework to address these two sparsity challenges.
Specifically, our UEG-EL contains three modules: 1) a graph con-
struction module is used to obtain a user-event graph containing
nodes for users, intents and items, where the intent nodes are gen-
erated by applying intent node attention (INA) on nodes of the
contextual features; 2) a user-event collaborative graph convolu-
tion module is designed to obtain the refined embeddings of all
features by executing a new convolution strategy on the user-event
graph, where each intent node acts as a hub to efficiently propagate
the information among different features; 3) a recommendation
module is equipped to integrate some existing context-aware rec-
ommendation model, where the feature embeddings are directly
initialized with the obtained refined embeddings. Moreover, we
identify a unique challenge of the basic framework, that is, the
contextual features associated with too many instances may suffer
from noise when aggregating the information. We thus further pro-
pose a simple but effective variant, i.e., UEG-EL-V, in order to prune
the information propagation of the contextual features. Finally, we
conduct extensive experiments on three public datasets to verify
the effectiveness and compatibility of our UEG-EL and its variant.
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1 INTRODUCTION
Previous studies have shown that users’ behaviors are often influ-
enced by the contextual information, and context-aware recom-
mender systems (CARS) are proposed to integrate these contextual
information to make more accurate fine-grained recommendations
to users [3, 21, 37]. The contextual information can be either ex-
plicitly observed or inferred from the latent space of the embed-
ding vectors [6, 26], and they can be used in the pre-filtering, post-
filtering, or modeling stages of a recommendation task [1]. Most
of the existing works for CARS focus on the modeling stage and
can be classified into two lines according to the adopted model
architecture: 1) the first line is to extend a recommendation task
to the multidimensional settings based on some machine learn-
ing methods to model the contextual information, especially ma-
trix factorization-, tensor factorization-, and factorization machine-
based methods [2, 4, 14, 23, 36, 38]; and 2) to improve the modeling
of higher-order and nonlinear relationships among the features, the
second line introduces some complex neural network architectures
into CARS, such as attention mechanisms [22, 39], convolutional
networks [10, 34], and graph learning techniques [5, 19, 30].

Although existing methods for CARS have shown promising re-
sults, most of them focus on improving the feature interaction layer
in the model to mine more beneficial information for recommenda-
tion, but overlook the embedding layer. However, an embedding
layer with random initialization suffers from the sparsity of the
contextual features, as well as the interactions between the users (or
items) and the contextual features in practice. The performance of
models for context-aware recommendation often heavily relies on
the learning of the contextual features. However, there are numer-
ous sparse contextual features in a real recommender system, i.e.,
they rarely appear in the training set. To validate this observation,
as shown in the right column of Figure 1, we visualize the frequency
distribution of the contextual features for each of the three datasets
used in the experiments. We can see that most of the contextual
features have a low frequency. This means that it is difficult for
most existing methods to learn a good embedding for these sparse
contextual features due to insufficient training examples, i.e., the
model performance will suffer from random initialization. We refer
to this challenge as feature sparsity. Additionally, accurately cap-
turing the relationship between the contextual features and users
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Figure 1: The distributions of the number of contextual fea-
tures associated with each user (left column) and item (mid-
dle column), as well as the frequency statistics of the contex-
tual features (right column), on Yelp-NC (top row), Yelp-OH
(middle row) and Amazon-Book (bottom row).

(or items) can also benefit the recommendation performance. How-
ever, from the left and middle columns of Figure 1, we can observe a
long-tailed distribution of the numbers of the associated contextual
features w.r.t. the users (or items) in each dataset. Therefore, the
existing methods may have a performance bottleneck for these
inactive users or unpopular items due to the insufficient preference
information for the contextual features. We refer to this challenge
as interaction sparsity.

Integrating and utilizing graph representation has shown to
be effective in mitigating data sparsity in other recommendation
tasks [9, 13, 27]. Motivated by this, in this paper, we first construct
a novel user-event graph for CARS, where the contextual features
are used to construct some additional user-intent nodes according
to the proposed intent-node attention (INA). These intent nodes
can act as a hub to build complex interactions among the users,
items, and contextual features, and are potentially useful for cap-
turing user preferences for different contextual features. Based on
user-event graph, we then integrate and leverage graph embedding
learning to obtain refined embeddings for the users, items, and
contextual features. Specifically, we propose a user-event collab-
orative graph convolution, where the users, items and contextual
features can all benefit from the information propagation process
of graph embedding learning through the constructed intent nodes.
This means that the nodes of the users, items and contextual fea-
tures trapped in the above two sparsity challenges may gain more
synergistic information to facilitate learning better embedding rep-
resentations. The obtained refined embeddings of all features can
later be used in a certain existing CARS model to improve the per-
formance. Therefore, we integrate all the above modules to obtain a
general embedding learning framework, which is called UEG-EL. In
particular, we also observe a unique challenge of UEG-EL in prac-
tical applications that the contextual features associated with too
many instances may suffer from noise when aggregating informa-
tion, and thus propose a simple but effective variant to alleviate it.
Finally, we conduct extensive experiments on three public datasets
to verify the effectiveness and compatibility of our UEG-EL and its
variant.

2 RELATEDWORK
In this section, we briefly review some relevant works on two re-
search topics, including graph neural network for recommendation
and context-aware recommender systems.

Graph Neural Network for Recommendation. Graph neural
network has been shown to be able to learn node embeddings more
accurately by capturing complex structural information, which are
beneficial for alleviating data sparsity [7, 11, 28]. These characteris-
tics have made it attract a lot of attention in the community of rec-
ommender systems recently. Most existing works adopt a user-item
bipartite graph to organize the user behaviors, and design different
graph learning strategies based on the bipartite graph to learn the
user and item embeddings [27, 31]. Since graph convolution usually
requires a large computational cost, some follow-up works aim to
optimize its efficiency [13, 20]. In addition, graph neural network
can be combined with some additional information for other rec-
ommendation tasks, such as sequential recommendation [29, 33],
social recommendation [25, 32], and CTR prediction [9, 16, 17].
However, few works focus on context-aware recommendation, in
particular of designing a specialized graph structure for this task,
while our UEG-EL is an exploration in this direction.
Context-Aware Recommender Systems. Context-aware recom-
mendation aims to make a finer-grained recommendation to users
by utilizing the rich contextual information, which can be either
explicitly observed or implicitly inferred from the latent space of
the embedding vectors [1, 6, 26]. The contextual information can
be used in the pre-filtering, post-filtering, or modeling stages of
a recommendation task, the last of which is a more popular para-
digm [1]. Existing works in this line can be divided into two classes
according to the adopted model architecture, including machine
learning and neural network-based methods. The former aims to
extend a recommendation task to the multidimensional settings to
model the contextual information, where some machine learning
methods, especially matrix factorization, tensor factorization, and
factorization machine, are adopted [4, 14, 23, 24, 36, 38]. The latter
further captures higher-order and nonlinear relationships between
different features by introducing some complex neural network
structures, such as attention mechanisms [22, 39], convolutional
networks [10, 34], and graph learning techniques [5, 19, 30]. One
of the important branches is its combination with factorization
machine, such as NFM [12] and xDeepFM [18]. As the most related
work to ours, GCM [30] proposes to use the contextual features as
the edge features on user-item bipartite graph, and designs a new
graph convolution to learn the graph structure. Our UEG-EL differs
significantly from it: 1) our proposed user-event graph introduces
some additional intent nodes to better connect different features;
and 2) treating the contextual features as nodes enables them to
benefit from graph embedding learning similar to the user and
item nodes, i.e., our UEG-EL refines the embeddings of all features
instead of ignoring the contextual features in GCM.

3 PRELIMINARIES
3.1 Problem Definition
In this subsection, we formally define the context-aware recommen-
dation task with the necessary notations. A typical context-aware
recommender system (CARS) usually consists of a set of 𝑀 users
U = {𝑢1, 𝑢2, . . . , 𝑢𝑀 }, a set of 𝑁 itemsV = {𝑣1, 𝑣2, . . . , 𝑣𝑁 }, and a
set of𝑅 fields of contextual features denoted asC = {C1, C2, . . . , C𝑅},
such as timestamps and locations. In addition, a set of 𝐽 fields of
user attributes A = {A1,A2, . . . ,A 𝐽 } and a set of 𝐾 fields of item
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attributes B = {B1,B2, . . . ,B𝐾 } may be provided as the additional
information. Let S = {(s1, 𝑦1), (s2, 𝑦2), . . . , (s𝐼 , 𝑦𝐼 )} denote a set of
𝐼 user-item interactions and their corresponding labels, an instance
of which can be represented as,

s𝑖 =
[
𝑢𝑖 , 𝑣𝑖 ,A𝑢𝑖 ,B𝑣𝑖 ,C

𝑖
]
, (1)

where 𝑢𝑖 ∈ U, 𝑣𝑖 ∈ V and C𝑖 ⊂ C denote the user, item, and
context involved in the 𝑖th instance, and A𝑢𝑖 ⊂ A and B𝑣𝑖 ⊂ B
are a list of attributes associated with 𝑢𝑖 and 𝑣𝑖 , respectively. These
information are usually encoded as a one-hot or multi-hot vector
in practice, and an encoding example of the item ID, item attributes
and contextual information are shown as follows,

[0, 0, . . . , 1, 0]︸          ︷︷          ︸
𝑣 : 𝐼𝑡𝑒𝑚𝐼𝐷

[1, 1, . . . , 0]︸       ︷︷       ︸
B𝑣 : 𝐵𝑟𝑎𝑛𝑑&𝑃𝑟𝑖𝑐𝑒

[1, 1, . . . , 1, 0]︸          ︷︷          ︸
C :𝑌𝑒𝑎𝑟&𝑀𝑜𝑛𝑡ℎ&𝐷𝑎𝑦

(2)

The user ID and user attributes have a similar encoding process,
which are thus omitted for simplicity. The goal of context-aware
recommendation is to accurately predict an item 𝑣 that is most
likely to be interacted by a user 𝑢 under a context C, where the
integration of the contextual information is crucial. However, both
the contextual information and the interactions between the users
(or items) and context may suffer from the sparsity challenge.

3.2 Base Model
Previous works have shown that factorization machine (FM) and its
variants are promising solutions for context-aware recommenda-
tion due to their effectiveness and efficiency [4, 8, 34]. Therefore, we
refer to factorization machine as the base model in this paper, which
will be combined with our framework as a downstream recommen-
dation model. Note that we will also analyze the compatibility of
our framework with other types of recommendation models in the
experiments.

3.2.1 Initial Embedding. As described in Eq.(2), an instance s𝑖 in
context-aware recommendation is usually represented in a sparse
high-dimensional binary form. We first need to apply an embed-
ding layer to compress the input into a dense low-dimensional
real valued form, where the embedding layer contains an embed-
ding table associated with the feature values. For a one-hot vector
𝑢 (or 𝑣), we can obtain a single embedding representation vector
e𝑢 (or e𝑣 ), and for a multi-hot vector A𝑢 (or B𝑣,C), a list of em-
bedding representation vectors eA𝑢

(or eB𝑣
, eC ) can be obtained.

In this work, we focus on leveraging graph embedding learning
to better model the complex interactions among the users, items
and contextual features and refine their representations, rather
than exploring fine-grained features of users or items. Therefore,
we simply use average pooling to aggregate the embeddings of
all the features of a user (or an item) as the representation of the
node of this user (or item), i.e., e′𝑢 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑜𝑜𝑙𝑖𝑛𝑔( [e𝑢 , eA𝑢

])
(or e′𝑣 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑝𝑜𝑜𝑙𝑖𝑛𝑔( [e𝑣, eB𝑣

])). Finally, these embedding rep-
resentation vectors are concatenated to obtain the representation
of the entire instance,

Es𝑖 = [e′
𝑢𝑖
, e′
𝑣𝑖
, eC𝑖 ] . (3)

3.2.2 Feature Interaction. After getting the embedding representa-
tion of an instance as input, most recommendation models include

a well-designed feature interaction layer to capture the user prefer-
ences. We adopt the architecture of factorization machine [23] in
the implementation,

𝑦 (s𝑖 ) = 𝜎 (𝑏𝑔 +
∑︁

𝑏★ + 1
2
[(
∑︁

e★)2 −
∑︁

e⊤★e★]), (4)

where ★ ∈ {𝑢𝑖 , 𝑣𝑖 ,C𝑖 }, 𝑏𝑔 is the global bias, 𝑏★ is the feature bias
term, and 𝜎 (·) is the sigmoid activation function.

3.2.3 Model Training. We use the point-wise log loss that is widely
used in recommender systems as the objective function,

L = − 1
|S′ |

∑︁
(s𝑖 ,𝑦) ∈S′

𝑦𝑖 log𝑦 (s𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑦 (s𝑖 )), (5)

where S′=S∪S−, and S− is a set of negative instances randomly
selected for each positive instance in S from a candidate set of
items that the corresponding user has not interacted with under
the same context.

4 USER-EVENT GRAPH EMBEDDING
LEARNING

As mentioned in Sec. 2, most existing context-aware recommen-
dation methods focus on improving the feature interaction layer,
but overlook the feature embedding layer. However, a feature em-
bedding layer with random initialization often suffers from the
two sparsity challenges mentioned earlier, especially for the con-
textual features that are critical for this task. To further improve
the performance of context-aware recommendation, in this paper,
we propose a user-event graph (UEG) to better model complex
interactions among the users, items and contextual features, and
integrate and leverage graph embedding learning based on the base
model to refine their embedding vectors. We coin the framework
as user-event graph embedding learning (UEG-EL). Our UEG-EL
consists of three modules, including graph construction, user-event
collaborative graph convolution, and recommendation using the
obtained refined embedding vectors. In this section, we describe
each module in detail along the training pipeline. We illustrate the
architecture of our proposed framework in Figure 2.

4.1 Graph Construction
4.1.1 Personal Graph. As themost relevant work to ours, the graph
structure adopted by GCM [30] can be viewed as a personal graph
G𝑝𝑔 =

〈
V𝑝𝑔, E𝑝𝑔

〉
, which organizes a user’s historical behaviors

centered on the node representing himself or herself as shown on
the left side of Figure 2. The nodes include the user ID and user
attributes, as well as the interacted items and their corresponding
attributes, i.e., V𝑝𝑔 = {𝑢} ∪ A𝑢 ∪ V ∪ B. In addition to the asso-
ciation between the IDs and the attributes, the edges also include
interactions between the user and the items, and the temporal rela-
tionships between items, i.e., E𝑝𝑔 = E𝑢𝑎 ∪ E𝑣𝑏 ∪ E𝑢𝑣 ∪ E𝑣𝑣 . Note
that, unlike the user-item bipartite graph commonly used in previ-
ous recommendation models, a list of contextual features are used
as edge features on a user’s interactions with items. In addition, a
personal graph can be further combined with external knowledge
graphs to form the personal knowledge graph [35].
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Figure 2: The architecture of the user-event graph embedding learning (UEG-EL) framework consists of three modules: 1) the
graph construction module is used to construct the user-event graph, where intent node attention (INA) is used to obtain the
required intent nodes from the original personal graph; 2) the user-event collaborative graph convolution module is used to
learn the refined embeddings of the users, items and contextual features; and 3) the recommendation module receives the
refined feature embeddings to improve the performance of a downstream recommendation model. Note that the length of the
context list is assumed to be 3.

4.1.2 User-Event Graph. We argue that modeling the contextual
features as edge features between users and items may limit the rec-
ommendation performance. On one hand, the contextual features
cannot benefit from the information propagation process of graph
embedding learning as users and items do. On the other hand, it
is difficult to accurately capture a user’s intent, i.e., to identify the
subset from the current contextual features that triggers the user’s
interaction event.

To address the above problems, we first propose a new graph
structure called user-event graph (UEG) for context-aware rec-
ommendation. Specifically, to construct the user-event graph, we
first propose intent node attention (INA) to capture the user in-
tent in each instance and generate some additional intent nodes
T = {𝑡1, 𝑡2, . . . , 𝑡 𝐼 }. Let the list of contextual features for an in-
stance be denoted as C𝑖 = {𝑐𝑖1, 𝑐

𝑖
2, . . . , 𝑐

𝑖
𝑍
}, where 𝑍 is the length

of the contextual features in each instance. Since a user’s behavior
may also be influenced by the preceding behaviors rather than the
context alone, we additionally consider the user’s last interacted
item before the current instance in INA. We use 𝑐𝑖

𝑍+1 to denote this
particular item for the sake of notational brevity. The intent node
attention of an instance is computed as follows,

𝛼𝑖𝑧 = Softmax(W⊤
0 Relu(W1e′𝑢𝑖 +W2e𝑐𝑖𝑧 + b1)). (6)

e𝑡𝑖 =
𝑍+1∑︁
𝑧=1

𝛼𝑖𝑧e𝑐𝑖𝑧 , (7)

where W0 ∈ R𝑑×1,W1,W2 ∈ R𝑑×𝑑 , b1 ∈ R𝑑×1 are trainable pa-
rameters, 𝑑 is the embedding size, and e𝑡𝑖 is the embedding rep-
resentation of the intent node corresponding to this instance. An
illustration of INA can be found on the left side of Figure 2. Based
on the obtained intent nodes, we can then build a user-event graph
G𝑢𝑒𝑔 = ⟨U ∪V ∪ T , E𝑢𝑡 ∪ E𝑣𝑡 ⟩ shown in the middle of Figure 2.

The intent nodes explicitly model a user’s intent to better capture
the user’s preferences over different contextual features. Addition-
ally, it acts as a hub to establish connections between users and
items, which helps model complex interactions among the users,
items, and contextual features.

4.1.3 Intent-Context Graph. To propagate the information in graph
embedding learning to contextual features, there is also an intent-
context graph G𝑖𝑐𝑔 = ⟨C ∪ T , E𝑐𝑡 ⟩ on the intent layer. Specifically,
each intent node is associated with 𝑍 contextual features, which
are used to compute this intent node in INA. Furthermore, each
edge between an intent node and a contextual feature has an intent
attention as a weight, i.e., 𝛼𝑖𝑧 in Eq.(6). This means that if a contex-
tual feature has a large weight in the generation of this intent node,
it will get more emphasis when the information is propagated.

4.1.4 Remarks. Our proposed user-event graph is clearly different
from user-item bipartite graphs [13, 27] and personal graphs [30]
previously applied to recommender systems. By using contextual
features to model user intent nodes, which in turn act as hubs
to generate connections between users and items, we expect to
obtain a better solution for context-aware recommendation. As
we will show in the experiments, the proposed user-event graph
has a significant advantage over the above graph structures. In
addition, the user-event graph is also potentially helpful to other
recommendation tasks via some extensions. For example, we can
integrate user behavior types or data from different domains as a
special contextual feature into the user-event graph.

4.2 User-Event Collaborative Graph
Convolution

Existing graph embedding learning techniques are not applicable
to our user-event graph due to its peculiar structure, i.e., the intent
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Figure 3: An illustration of information propagation for the
nodes of users, items and contextual features in user-event
collaborative graph convolution.

nodes. Therefore, in this section we introduce the proposed user-
event collaborative graph convolution to exploit the power of the
user-event graph. Specifically, we aim to fully exploit the pivotal
role of the intent nodes to explore the connections among the users,
items, and contextual features, especially to identify a focused sub-
set of users in contextual features. This in turn feeds back into
intent node attention to get a more accurate node embedding, i.e.,
the first two modules of our framework are synergistic. The infor-
mation propagation for different nodes in user-event collaborative
graph convolution is illustrated in Figure 3.

4.2.1 Information Propagation for the Users. For a user, we expect
that it will be fully explored with the item and context. Therefore,
as shown on the left side of Figure 3, we use the intent nodes as a
hub to propagate the information about the items and contextual
features to the users,

p(ℎ)
𝑢𝑖 ,𝑖

= p(ℎ−1)
𝑣𝑖

+ p(ℎ−1)
𝑡𝑖

, (8)

where p(ℎ)
𝑢𝑖 ,𝑖

is the information representation passed to the user
associated with the 𝑖th instance in layer ℎ of graph convolution,
p(ℎ−1)
𝑣𝑖

and p(ℎ−1)
𝑡𝑖

are the item embedding and intent node embed-

ding at layer ℎ − 1, respectively, and p(0)
𝑣𝑖

= e′
𝑣𝑖
, p(0)
𝑡𝑖

= e𝑡𝑖 . For
each user 𝑢, we then aggregate the information about all instances
associated with it to get the embedding of layer ℎ,

p(ℎ)𝑢 =
1√︁

|{𝑖 |𝑢𝑖 = 𝑢}|

∑︁
𝑖,𝑢𝑖=𝑢

p(ℎ)
𝑢,𝑖

. (9)

The intuition behind Eq.(9) is to capture which type of items a user𝑢
will interact with under which contextual features. Finally, a refined
user embedding can be obtained by averaging the embeddings of
each layer,

p̂𝑢 =
1

𝐻 + 1

𝐻∑︁
ℎ=0

p(ℎ)𝑢 . (10)

4.2.2 Information Propagation for the Items. Similarly, as shown in
the middle of Figure 3, we use the intent nodes as a hub to propagate
the information about the user and contextual features to the items,

p(ℎ)
𝑣𝑖 ,𝑖

= p(ℎ−1)
𝑢𝑖

+ p(ℎ−1)
𝑡𝑖

, (11)

where p(ℎ−1)
𝑢𝑖

is the user embedding at layerℎ−1. The embedding of
an item 𝑣 at layer ℎ can be obtained by aggregating the information
of all instances associated with it,

p(ℎ)𝑣 =
1√︁

|{𝑖 |𝑣𝑖 = 𝑣}|

∑︁
𝑖,𝑣𝑖=𝑣

p(ℎ)
𝑣,𝑖
. (12)

We design this equation to capture which type of users interact
with item 𝑣 under which contextual features. We then obtain a

refined item embedding as follows,

p̂𝑣 =
1

𝐻 + 1

𝐻∑︁
ℎ=0

p(ℎ)𝑣 . (13)

4.2.3 Information Propagation for the Context. To propagate the
user and item information to the contextual features, as shown on
the right side of Figure 3, the information is first propagated to an
intent node,

p(ℎ)
𝑡𝑖 ,𝑖

= p(ℎ−1)
𝑢𝑖

+ p(ℎ−1)
𝑣𝑖

. (14)

Then, the contextual features receive different information sent by
the intent nodes according to the attention distribution,

p(ℎ)
𝑐𝑖𝑧 ,𝑖

= 𝛼𝑖𝑧p
(ℎ)
𝑡𝑖 ,𝑖
. (15)

Finally, the embedding of the contextual features at layer ℎ and the
final refined embedding can be obtained,

p(ℎ)𝑐𝑧 =
1√︃

|{𝑖 |𝑐𝑖𝑧 = 𝑐𝑧 }|

∑︁
𝑖,𝑐𝑖𝑧=𝑐𝑧

p(ℎ)
𝑐𝑖𝑧 ,𝑖
, (16)

p̂𝑐𝑧 =
1

𝐻 + 1

𝐻∑︁
ℎ=0

p(ℎ)𝑐𝑧 . (17)

Note that after getting p(ℎ)𝑐𝑧 , we need to feed the information back
to the intent node to get the embedding of the intent node at layer
ℎ + 1, which will be used in Eq.(8) and Eq.(11),

p(ℎ+1)
𝑡𝑖

=
∑︁

𝛼𝑖𝑧p
(ℎ)
𝑐𝑖𝑧
. (18)

The intuition behind Eq.(16) is capturing the affinities between dif-
ferent users (and items) and specific contextual features. Comparing
with Eq.(3), after performing user-event collaborative graph convo-
lution, we can obtain a set of corresponding refined embeddings,

Ps𝑖 = [p̂𝑢𝑖 , p̂𝑣𝑖 , p̂C𝑖 ] . (19)

4.2.4 Pruning the Information Propagation of Context. We find in
practice that the above information propagation for contextual
features may have a limitation. For example, when the contextual
features are associated with too many instances, aggregating the
information of all instances may suffer from noise. Therefore, we
further propose a simple but effective variant, i.e., UEG-EL-V, by
pruning the information propagation of the context. Specifically,
for each context 𝑐𝑧 , we first obtain a mean vector of the intent node
embeddings for all instances associated with it. Then, we compute
the distances of these instances from the mean vector, and use a pre-
set pruning rate 𝜃 to remove those instances with larger distances.
The idea behind this pruning operation is that instances with a
different intent than the majority driven by this contextual feature
are more likely to be noise.

4.3 Complexity Analysis
In this subsection, we analyze the time complexity of our UEG-EL.
Since the refined embeddings can be obtained in offline training
and be directly used for online inference, the time complexity of our
UEG-EL in this case is the same as that of the base model. For model
training, user-event collaborative graph convolution dominates the
time cost, and its computational complexity is O(𝑍 · |G𝑢𝑒𝑔 | · 𝑑),
where |G𝑢𝑒𝑔 | denotes the number of edges in G𝑢𝑒𝑔 . Compared with
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that of a bipartite graph model commonly used in recommender
systems, the complexity is linear with the number of the edges
between the intent nodes and contextual features. Therefore, to
speed up model training, a pre-filtering of the contextual feature
set, and a pruning operation similar to that described in Sec. 4.2.4,
are necessary.

5 EMPIRICAL EVALUATIONS
In this section, we conduct experiments with the aim of answering
the following six key questions. Note that the source codes are
available at https://github.com/dgliu/KDD22_UEG.
• RQ1: How does our UEG-EL perform compared to the baselines?
• RQ2: What is the role of each module in our UEG-EL?
• RQ3: What is the effect of our UEG-EL variant (i.e., UEG-EL-V)?
• RQ4: How is the compatibility of our UEG-EL?
• RQ5: What are the characteristics of intent attention obtained in
our UEG-EL?

• RQ6: Does our UEG-EL alleviate the two sparsity challenges of
context-aware recommendation?

5.1 Experimental Setup
5.1.1 Datasets. Following the settings of a previous work [30], we
conduct experiments on three public datasets including Yelp-NC,
Yelp-OH and Amazon-Book1. Yelp-NC and Yelp-OH are the records
of North Carolina (NC) and Ohio States (OH), respectively, in the
Yelp dataset2, which contains a large number of user reviews of
local businesses. Amazon-Book is a subset of the Amazon dataset3,
which includes numerous user interactions with book products.

5.1.2 Dataset Preprocessing. In Yelp-NC and Yelp-OH, each user
contains two attributes, i.e., 𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑠𝑡𝑎𝑟𝑠 and 𝑦𝑒𝑙𝑝𝑖𝑛𝑔_𝑦𝑒𝑎𝑟 . Each
item has three attributes, i.e., 𝑐𝑖𝑡𝑦, 𝑠𝑐𝑜𝑟𝑒𝑠 and 𝑖𝑠_𝑜𝑝𝑒𝑛. There are also
four kinds of context, for where and when an interaction occurs, i.e.,
𝑐𝑖𝑡𝑦,𝑚𝑜𝑛𝑡ℎ, ℎ𝑜𝑢𝑟 , and 𝑑𝑎𝑦_𝑜 𝑓 _𝑤𝑒𝑒𝑘 (DoW). In the Amazon-Book
dataset, the item attributes are 𝑝𝑟𝑖𝑐𝑒 and 𝑏𝑟𝑎𝑛𝑑 , and contextual
features include 𝑦𝑒𝑎𝑟 , 𝑚𝑜𝑛𝑡ℎ, ℎ𝑜𝑢𝑟 , and 𝑑𝑎𝑦_𝑜 𝑓 _𝑤𝑒𝑒𝑘 . For each
dataset, we further remove a user’s records if the number of records
is smaller than 10. For each item sequence of a user, we take the last
interaction as the test data, and the remaining as the training and
validation data. We summarize the statistics of the three processed
datasets in Table 1.

Table 1: Statistics of the processed datasets.

Dataset Yelp-NC Yelp-OH Amazon-Book
#User 6,336 5,170 44,709
#Item 13,003 12,997 46,831
#Instance 185,408 143,884 1,174,785
#User Attribute 24 24 -
#Item Attribute 68 213 24,816
#Contextual Feature 206 350 69

5.1.3 Baselines. We choose the representative methods among the
two lines of context-aware recommendation summarized in Sec. 2.
For the first line, we use the basic matrix factorization (MF) [15]

1https://github.com/wujcan/GCM
2https://www.yelp.com/dataset
3http://jmcauley.ucsd.edu/data/amazon/

and factorization machine (FM) [23] as our baselines since previ-
ous works have shown that tensor factorization based methods
are generally less efficient and effective [34]. It is also used as an
additional base model in Sec. 5.5 to evaluate the compatibility of
the proposed framework. For the second line, we first choose two
representative neural network-based factorization machine meth-
ods as our baselines, i.e., NFM [12] and xDeepFM [18]. We then
focus on the sub-line using graph neural networks, which is more
relevant to our work. We choose three recent representative meth-
ods as our baselines, i.e., LightGCN [13], GIN [16] and GCM [30],
where LightGCN is an important reference for using graph neural
networks in recommendation, GIN builds an item-item graph and
incorporates context to better capture user preferences, and GCM
is the most relevant method to ours and is thus taken as a most
important baseline.

5.1.4 Evaluation Metrics. We evaluate the recommendation perfor-
mance via two widely used ranking-oriented metrics, i.e., hit ratio
(HR@𝑘) and normalized discounted cumulative gain (NDCG@𝑘).
We report the results with 𝑘 set to 10 and 50 [30]. The candidate
items to be recommended for a user are from the set of items that
have not been interacted by the user.

5.1.5 Implementation Details. We implement our UEG-EL and its
variant in TensorFlow 1.15. For all baselines, we use the open-
source implementation and parameter settings provided in [30],
where the embedding size is set to 64, the batch size is set to 2048,
the learning rate is set to 0.001, and Adam is used as the opti-
mizer. For our method, we tune the number of GNN layers 𝐻 in
the range of {1, 2, 3}, the L2 regularization term in the range of
{1𝑒−1, 1𝑒−2, 1𝑒−3, 1𝑒−4, 1𝑒−5}, and the pruning rate 𝜃 in the range
of {0.1, 0.3, 0.5, 0.7, 0.9}, and set the other parameters the same as
the baselines. We perform grid search to tune the hyper-parameters
by evaluating the summation of HR@10 and NDCG@10. To avoid
over-fitting, we also adopt an early stopping strategy with the
patience set to 50 times.

5.2 RQ1: Performance Comparison
We report the comparison results in Table 2. From the results in Ta-
ble 2, we can have the following observations: 1) FM-based methods
can capture the relationship between users, items and contexts, and
achieve better performance than MF, which indicates the key role
of contextual features in CARS; and 2) For GNN-based methods,
LightGCN has a better result than MF, which shows the advantage
of graph neural network in capturing user preferences. GIN mines
user intent based on co-occurrence item graph and achieves a bet-
ter result, indicating that the modeling of user intent is helpful for
understanding user preferences. By introducing contextual features
into the bipartite graph as edge features, GCM performs the best
among the baselines. This means that a reasonable graph struc-
ture for context-aware recommendation can contribute a better
performance. Our UEG-EL consistently outperforms all baselines.
This demonstrates the effectiveness of the proposed intent node
attention (INA) and user-event graph. In particular, our UEG-EL
can be seen as an integration and further improvement of all the
above beneficial observations. We also note that our UEG-EL has a
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Table 2: Results on all datasets, where the best and second best results are marked in bold and underlined, respectively. Note
that ∗ indicates a significance level of 𝑝 ≤ 0.05 based on two-sample t-test between our method and the best baseline.

Dataset Yelp-NC Yelp-OH Amazon-Book
Metrics HR@10 HR@50 NDCG@10 NDCG@50 HR@10 HR@50 NDCG@10 NDCG@50 HR@10 HR@50 NDCG@10 NDCG@50

MF 0.0384 0.1173 0.0175 0.0341 0.0429 0.1261 0.0206 0.0383 0.0402 0.1243 0.0203 0.0382
FM 0.0739 0.1804 0.0396 0.0624 0.1959 0.4201 0.1049 0.1538 0.0587 0.1477 0.0323 0.0514
NFM 0.0587 0.1477 0.0323 0.0514 0.2248 0.4836 0.1161 0.1725 0.0808 0.1954 0.0444 0.0692

xDeepFM 0.0851 0.2086 0.0458 0.0723 0.2296 0.4799 0.1218 0.1762 0.0886 0.2119 0.0481 0.0748
LightGCN 0.0499 0.1394 0.0241 0.0431 0.0518 0.1520 0.0249 0.0461 0.0543 0.1466 0.0274 0.0473

GIN 0.0866 0.2175 0.0449 0.0722 0.2304 0.4965 0.1238 0.1818 0.0939 0.2189 0.0502 0.0774
GCM 0.1042 0.2451 0.0546 0.0850 0.2584 0.5147 0.1428 0.1990 0.0983 0.2222 0.0550 0.0819

UEG-EL 0.1067∗ 0.2470 0.0570 0.0875 0.2656 0.5350 0.1481 0.2073∗ 0.0992 0.2385 0.0555 0.0857
UEG-EL-V 0.1062 0.2476∗ 0.0572∗ 0.0878∗ 0.2706∗ 0.5354∗ 0.1484∗ 0.2063 0.1112∗ 0.2555∗ 0.0623∗ 0.0936∗

Table 3: Results of the ablation studies on all datasets, where the best results are marked in bold.

Dataset Yelp-NC Yelp-OH Amazon-Book
Metrics HR@10 HR@50 NDCG@10 NDCG@50 HR@10 HR@50 NDCG@10 NDCG@50 HR@10 HR@50 NDCG@10 NDCG@50
UEG-EL 0.1067 0.2470 0.0570 0.0875 0.2656 0.5350 0.1481 0.2073 0.0992 0.2385 0.0555 0.0857

w/o CGC (𝐻=1) 0.1012 0.2238 0.0544 0.0810 0.2567 0.5104 0.1398 0.1950 0.0983 0.2211 0.0551 0.0818
w/o CGC (𝐻=2) 0.0901 0.2268 0.0474 0.0769 0.2147 0.4219 0.1158 0.1608 0.0860 0.1954 0.0481 0.0717

w/o CGC, INA (𝐻=1) 0.0974 0.2252 0.0514 0.0788 0.2489 0.5075 0.1358 0.1920 0.0817 0.1940 0.0450 0.0693
w/o CGC, INA (𝐻=2) 0.1042 0.2451 0.0546 0.0850 0.2584 0.5147 0.1428 0.1990 0.0983 0.2222 0.0550 0.0819

relatively small improvement on Amazon-Book with a large num-
ber of instances and fewer contextual features, and our UEG-EL-V
has a significant performance gain. This validates the observations
described in Sec. 4.2.4 and the effectiveness of the proposed pruning
method in our UEG-EL-V.

5.3 RQ2: Ablation Study of UEG-EL
To analyze the contribution of intent node attention (INA) and in-
formation propagation of context nodes in user-event collaborative
graph convolution (CGC) in our UEG-EL, we conduct an ablation
study and report the results in Table 3. We test the performance of
our UEG-EL without CGC (denoted as ‘w/o CGC’), UEG-EL without
CGC and INA (denoted as ‘w/o CGC, INA’, i.e., GCM). We have the
following observations: 1) ‘w/o CGC (𝐻=1)’ vs. ‘w/o CGC, INA
(𝐻=1)’. UEG-EL without CGC beats UEG-EL without CGC and INA,
indicating that our proposed INA can well capture the different user
intents on each sample. The user intent will enter the user node
and item node of the user-event graph via information propagation,
making the refined vectors of the users and items more in line with
user intent. 2) ‘w/o CGC (𝐻=2)’ vs. ‘w/o CGC (𝐻=1)’. UEG-EL
without CGC using 2-layer GNN will be weaker than 1-layer, which
means that the traditional convolution method is not suitable for
the case with INA. The reason why the higher-order information
cannot be accurately modeled in higher-order aggregation may be
that the learning of attention becomes complicated. However, UEG-
EL without CGC and INA still performs well when 𝐻=2, which
motivates us to design a new convolution mode, i.e., our CGC. 3)
UEG-EL vs. ‘w/o CGC, INA (𝐻=2)’, ‘w/o CGC (𝐻=2)’. UEG-EL
achieves the best results, which means that the proposed new con-
volution mode CGC can help INA to capture user intent better, i.e.,
our UEG-EL is synergistic. In particular, CGC can enable a context
node to obtain effective high-order collaborative information on
the basis of INA.

5.4 RQ3: Effectiveness of UEG-EL-V
In this subsection, we explore the effect of different values of the
pruning rate 𝜃 on our UEG-EL-V, and show the results in Figure 4.
From Figure 4, we can see that as the pruning rate increases, the ef-
fect of our UEG-EL-V on Yelp-NC and Yelp-OH gradually decreases.
The reason is that they have a relatively small number of samples,
causing the pruning operation to exclude a lot of context and our
UEG-EL-V can thus not learn the appropriate high-order collabora-
tive information well. On Amazon-Book, the performance improves
as the pruning rate increases, indicating that our proposed pruning
method can effectively alleviate the influence of noise in aggre-
gating information for contextual features when a large number
of instances are available. On all datasets, we find that when the
pruning rate increases, the evaluation time becomes shorter, which
is a merit of a typical pruning strategy in improving the efficiency.

5.5 RQ4: Compatibility Evaluation of UEG-EL
To verify the improvement of our UEG-EL on different downstream
recommendation models, we use three typical recommendation
models, i.e., MF, FM and MLP, in our experiments. We also compare
GCMas it is themost relevantmethod to ours. The results are shown
in Figure 5. Our UEG-EL outperforms the base downstream model
that uses the initial embedding vector of user, item and context
in all cases and outperforms GCM in most cases. This suggests
that our UEG-EL can be used as a general framework to improve
the performance of different downstream recommendation models.
And unlike GCM, the proposed user-event graph can refine the
contextual feature embeddings, which is beneficial to downstream
models. Note that ‘UEG-EL+MF’ does not exceed ‘GCM+MF’ on
Amazon-Book. The reason is that MF only uses the refined vectors
of the users and items, and if we do not use the refined vectors of
the context in a downstream model, the user intent in our INA may
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Figure 4: Recommendation performance of UEG-EL-V and
the ratio of its computation time compared with that of UEG-
EL, where the values on the x-axis (i.e., the pruning rates) are
0.1, 0.3, 0.5, 0.7 and 0.9, respectively.

not be learned well. In contrast, both our ‘UEG-EL+FM’ and ‘UEG-
EL+MLP’ exceed ‘GCM+FM’ and ‘GCM+MLP’ when the refined
vectors of the context are used.
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Figure 5: Recommendation performance of GCM and our
UEG-EL with different downstream models, i.e., MF, FM and
MLP, on the three datasets.

5.6 RQ5&RQ6: In-depth Analysis of UEG-EL
In this subsection, we conduct a case study of our UEG-EL on Yelp-
OH as an example. Specifically, we select four representative users
and calculate each user’s average attention on all the interacted
records as the global user intent, which is shown in Figure 6(a).
Note that we use ‘last’ to refer to the last item the user interacted
with. We can find that the users’ intents are different, e.g., user 1
and 2 pay more attention to the context ‘𝑐𝑖𝑡𝑦’, while user 3 and
4 pay more attention to the last interacted items. The temporal
context ‘𝑚𝑜𝑛𝑡ℎ’, ‘ℎ𝑜𝑢𝑟 ’ and ‘𝑑𝑎𝑦_𝑜 𝑓 _𝑤𝑒𝑒𝑘 (DoW)’ are often of low
values, but user 3 is sensitive to ‘ℎ𝑜𝑢𝑟 ’.

Moreover, we select some interactions of user 3 for fine-grained
visualization of the intent. As shown in Figure 6(b), we can see
that this user has different intents in different events. For event 1,
the user is more inclined to interact at a certain moment, which
is likely to be a habitual behavior. For events 2 and 4, the user
chooses to interact because it is an item similar to the most recently
interacted ones. For event 3, it is likely because of an item that the
user interacts with in a certain city. In general, different users have
different intents in different contexts, and a user’s intents for the
contexts vary in different interactions, which justifies the necessity
of our proposed INA.
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Figure 6: Visualization of the attention of our UEG-EL w.r.t.
some users in Yelp-OH.

To identify the effect of our UEG on the two problems of feature
sparsity and interaction sparsity, we conduct three studies about
GCM and our UEG-EL on Yelp-OH. We first group all users accord-
ing to the number of contextual features they had interacted with,
and count the average result within each group in turn. The results
are shown in Figure 7(a), and we can find that our UEG-EL has a
significant improvement on all groups. In particular, when a user
associates more contextual features, our UEG-EL has a better result
since the proposed INA can effectively identify the attention subset
of this user. Similarly, we group all items according to the num-
ber of associated contextual features and compute their average
result. As shown in Figure 7(b), our UEG-EL has a more significant
improvement on item groups associated with fewer contextual fea-
tures. Finally, we group the contextual features by their respective
frequencies, and the average results for each group are shown in
Figure 7(c). We can see a bigger boost with our UEG-EL on groups
with lower frequencies. The above results demonstrate that our
UEG-EL can effectively alleviate these two key challenges in CARS.
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Figure 7: Recommendation performance of our UEG-EL with
different user-context (u-c) interaction levels, item-context
(i-c) interaction levels, and context frequencies on Yelp-OH.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a novel user-event graph embedding
learning (UEG-EL) framework to address two sparsity challenges
suffered by a typical embedding layer with random initialization
in existing context-aware recommendation models. Our UEG-EL
includes three modules, i.e., a graph construction module for ob-
taining the user-event graph, a user-event collaborative graph con-
volution module for refining the embeddings of all features, and
a recommendation module to improve the performance of some
existing context-aware recommendation model using the refined
embeddings. Finally, we conduct extensive experiments on three
real-world datasets to verify the effectiveness and compatibility of
our solution.
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For future works, we plan to explore more robust user-event col-
laborative graph convolutions for massive instances. In particular,
we will conduct an in-depth analysis of the information propaga-
tion mechanism of a contextual feature node to further identify
its relationship to different instances. In addition, we are also in-
terested in extending and applying the user-event graph to other
recommendation tasks.
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