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Abstract—Collaborative ranking with implicit feedback such as
users’ clicks is an important recommendation problem in various
real-world applications. Most existing approaches are developed
based on some pointwise or pairwise preference assumptions,
although the listwise assumption is widely accepted as a better
alternative due to its consistency with the final delivery result.
In this paper, we first identify two fundamental limitations of
the most current collaborative listwise approaches, in which
their modeling is based on the Plackett-Luce probability. They
are too strict and too weak relative preference comparison
between the items with the same feedback and between the items
with different feedback, respectively. As a response, we propose
a novel and improved listwise approach called SQL-Rank++,
which is able to learn the user preferences more accurately by
leveraging some specifically constructed auxiliary lists, including
some positive lists and some negative lists. Specifically, the
positive lists have as much semantic consistency as the original
list as possible, while the negative lists are the opposite. To
construct these auxiliary lists, we design a self-based sampling
strategy and a user similarity-based one. Finally, we have four
variants of our SQL-Rank++ with different combinations of the
auxiliary lists. We then conduct extensive experiments on four
public datasets, and find that our SQL-Rank++ achieves very
promising performance in comparison with several pointwise,
pairwise and listwise approaches. We also study the influence
of the two sampling strategies and the key components in our
SQL-Rank++.

Index Terms—collaborative ranking, implicit feedback, list-
wise, auxiliary list

I. INTRODUCTION

Recommender systems usually use a user’s historical feed-
back data to analyze the user’s preference, where the data
types include explicit feedback and implicit feedback [1], [2].
Explicit feedback can intuitively show how much a user likes
an item, but it is difficult to be collected in many application
scenarios, such as user ratings for movies or music. On the
contrary, implicit feedback usually refers to a user’s interaction
with an item, and can be easily collected in actual applications,
such as a user’s click and purchase on an item. Therefore, how
to effectively improve the recommendation performance based
on implicit feedback is an important research topic that has
received more and more attention.

Most recommendation approaches based on implicit feed-
back are designed by adopting a pointwise or pairwise pref-
erence assumption. A pointwise approach only considers a
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user’s feedback label on a specific item to model the user’s
preference [3]–[7], and a pairwise approach introduces neg-
ative sampling to further model the comparison relationship
between samples [2], [8]. However, a preference assumption
that is more consistent with the goal of a real-world recom-
mender system is listwise, that is, to accurately model a user’s
preference distribution in a displayed item recommendation
list. Compared with the other two forms, there are very few
works focusing on modeling the users’ implicit feedback from
a listwise perspective.

Previous works in this line can be categorized into two
classes, including the approaches based on the Plackett-Luce
probability and the approaches optimizing a certain ranking
metric. The former mainly constructs an item list (usually
putting the observed feedback in the first half of the list
and the unobserved feedback in the second half) for a user
and uses the Plackett-Luce probability to calculate the sorting
relationship between the items in the list, and then obtains the
matching degree of this list with the user [9]–[12]. The latter
usually optimizes a desired ranking metric directly by deriving
a smoothed form of the ranking metric [13]–[16]. Since the
approaches based on the Plackett-Luce probability have better
interpretability and scalability, we focus on improving the
performance of these approaches in this paper.

We first identify the approaches based on the Plackett-Luce
probability generally have the following two limitations: 1)
The constraints on the items with the same feedback in the
list are often too strict. These approaches often construct an
item list and assume that it obeys a descending preference
sorting. Because of this, the items with the same feedback
are also modeled by the strict sorting relationship, so any un-
reasonable position pairs between them will seriously damage
the performance of the approach. 2) The constraints between
the items with different feedback are usually too weak. The
goal of these listwise approaches is to ensure that the overall
ranking of the item list is correct, which means that the gap
between the observed feedback and the unobserved feedback
may be too small, especially the latter part of the observed
feedback and the front part of the unobserved feedback.

To solve the above two limitations, by introducing some
special auxiliary lists and combining them with the original
list for joint learning, we propose a novel listwise approach
called SQL-Rank++. Specifically, our approach uses a state-
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of-the-art and representative listwise approach as the skeleton,
i.e., SQL-Rank [12], which is based on the Plackett-Luce
probability. The introduced auxiliary lists in our SQL-Rank++
are then divided into two types, including some positive lists
and some negative lists. The positive lists and the original list
maintain the semantic consistency as much as possible, while
the negative lists are the opposite.

We propose a self-based sampling strategy and a user
similarity-based one to construct some auxiliary lists. The self-
based sampling strategy shuffles the observed and unobserved
parts of the original list to construct some positive lists, and
only samples from the set of unobserved items to obtain
some negative lists. Based on collaborative ranking, the user
similarity-based sampling strategy defines the neighbors and
dissimilar users for each user, and then use the original lists of
the neighboring and dissimilar users as the positive lists and
the negative lists, respectively.

There are some works that use the pairwise loss as an
auxiliary loss function to capture the hidden implicit informa-
tion [17], [18]. And some works focus on the sampling strategy
and the partitioned preference problem of listwise learning to
rank [19], [20]. However, our work is fundamentally different
from the above works. For the former, we emphasize the
distinction between the observed and unobserved parts of the
lists, which is different from the traditional pairwise methods
and is also more complicated. We show its impact of our
SQL-Rank++ in Section V-B3. For the latter, these works
mainly focus on reducing the time complexity of the listwise
approach, while we focus on improving the effectiveness of the
model through the comparison of various feedback and better
sampling strategies. At the same time, our SQL-Rank++ has
near-linear time complexity and we show the related analysis
in Section V-B2.

According to the different combinations of the auxiliary
lists, we have four variants, i.e., SQL-Rank++(P), SQL-
Rank++(N), SQL-Rank++(P vs. N) and SQL-Rank++(P +
N). Finally, extensive empirical studies on four public real-
world datasets show that our SQL-Rank++ performs better
than several state-of-the-art approaches. We also compare the
performance between different variants of our SQL-Rank++,
and discuss the influence of different sampling strategies. To
fully study the effectiveness of our approach, we conduct
quantitative study to discuss the impact of the number of
auxiliary lists, and ablation study to show the effect of the
key components.

II. RELATED WORK

In this paper we focus on proposing a novel approach to
solve the possible limitations of the listwise approaches in the
context of implicit feedback. Hence, in this section, we briefly
introduce the previous recommendation approaches based on
implicit feedback, including pointwise, pairwise and listwise
approaches.

Pointwise approaches usually treat implicit feedback as a
binary preference assumption, in which an observed feedback
is taken as a positive sample, and a user’s preference to an

unobserved feedback is unknown. Pan et al. introduce a weight
to measure the confidence of taking an unobserved feedback
as a negative sample to solve this problem [3]. Johnson et
al. propose logical matrix factorization to accurately model
the likelihood that a user will prefer a specific item [4].
Some researchers focus on the weighting strategy of matrix
factorization, e.g., He et al. weight the unobserved items non-
uniformly and propose a fast learning approach to reduce the
time complexity [21]. Chen et al. use a parameterized neural
network to generate more adaptive confidence weights for
weighted matrix factorization and develop a new batch-based
learning algorithm to support fast and stable learning [22].
In addition, there are some works to further model the user
preferences by considering different influencing factors, such
as the exposure process of items [5], the similarity between
items [6], [23], and the diversity of the user preferences [7].

Instead of modeling a user’s preference to one single
certain item, pairwise approaches aim to model the difference
between the preference of a user to an observed item and
that to an unobserved one. One of the most representative
approaches is Bayesian personalized ranking (BPR) [2]. It
assumes that a user’s preference to an observed item is larger
than that to an unobserved one, and directly optimizes the
user’s preference difference. Furthermore, a series of works
improve the performance of BPR by considering the different
combinations between a single item and an item set, such as
an observed item vs. a set of sampled unobserved items [24], a
set of sampled observed items vs. a set of sampled unobserved
items [25], [26]. In addition, with the popularity of deep
learning, most recent recommendation approaches adopt the
idea of pairwise preference assumption in the loss function to
learn more accurate user preferences [27].

The listwise approaches have received relatively little atten-
tion. We present most of the research works in this line in
Table I. The approaches optimizing a certain ranking metric
such as the normalized discounted cumulative gain [13], the
mean reciprocal rank [14]–[16] and the mean average preci-
sion [15] usually derive a smooth form of the desired metric,
and then directly optimize it. The approaches based on the
Plackett-Luce probability first describe the sorting relationship
between the observed feedback and the unobserved feedback
in a list, and then optimize the Plackett-Luce probability of
the list for a user [9]–[12]. A recent representative approach is
SQL-Rank [12], which weakens the influence of sorting noise
between the observed items by shuffling the observed items
and re-sampling the unobserved items in each iteration (called
stochastic queuing process). In this paper, we aim to further
address the possible limitations of the approaches based on
the Plackett-Luce probability.

Although there are many new recommendation frameworks
such as graph convolution networks [28], [29] and variational
autoencoders [30], [31], we still follow most previous listwise
approaches and use the factorization framework for direct
comparison. In particular, we use SQL-Rank as the skeleton
of the proposed approach.
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TABLE I
SUMMARY OF LISTWISE COLLABORATIVE RANKING

APPROACHES

Categorization Typical work Year Feedback Top-N

Approaches based on
the Plackett-Luce

probability

listRank-MF [9] 2010 Explicit 1
listPMF [10] 2014 Explicit 1
listCF [11] 2015 Explicit 1

SQL-Rank [12] 2018 Explicit, Implicit K

Approaches optimizing
a certain ranking

metric

CoFiRank [13] 2010 Explicit K
CLiMF [14] 2012 Implicit K
CLAPF [15] 2020 Implicit K
LRVAE [16] 2020 Implicit K

III. PRELIMINARIES

In this section, we present the notations and the definition
of the studied problem. Taking the state-of-the-art listwise ap-
proach SQL-Rank as an example, we introduce the limitations
of the listwise approach based on the Plackett-Luce probability
in modeling implicit feedback.

A. Notations and Problem Definition

We use U and I to denote the sets of users and items,
where n = |U| and m = |I| are the numbers of users and
items, respectively. The set of items preferred by user u is
Iu. We have a set R = {(u, i)}, which contains the observed
implicit feedback from users and items. Our goal is to generate
a personalized ranking list of items to each user by learning
the user’s preference from R. For most listwise approaches,
they usually construct a ranking list Πu of all the observed
items and some unobserved items sampled from I\Iu for
user u and then optimize the sorting relationship in this list.
These listwise approaches often assume that the items ranked
at higher positions in the list are more preferred by the user.
Some notations and their explanations used in the paper are
shown in Table II.

B. The Plackett-Luce Probability-based Approach: SQL-Rank

A Plackett-Luce probability-based approach uses the permu-
tation probability of Πu as the optimization goal [32], which
is defined as follows:

P (Πu)
def
=

Lu∏
j=1

ϕ(SuΠuj )∑Lu

h=j ϕ(SuΠuh
)

(1)

where Πuj denotes the j-th item in Πu (1 ⩽ j ⩽ Lu). A user’s
score on item Πuj is represented by SuΠuj

. Notice that Lu

is the number of items in Πu. And ϕ(·) is an increasing and
strictly positive function. The intuition of this probability is
that the higher the scores on the top-ranked items, the greater
the probability values.

SQL-Rank [12] introduces this permutation probability into
collaborative ranking by letting SuΠuj

= σ(r̂uΠuj
) and ϕ(·) =

exp(·), where r̂uΠuj
= Uu·V

T
Πuj · is the predicted preference

of user u to item Πuj . Notice that Uu· ∈ R1×d and VΠuj · ∈
R1×d are the latent feature vectors of user u and item Πuj ,
respectively [12]. σ(x) = 1/(1+e−x) is the sigmoid function.

TABLE II
SOME NOTATIONS AND EXPLANATIONS

U set of users
I set of items
n = |U| user number
m = |I| item number
Iu set of items preferred by user u in training data
R = {(u, i)} set of all observed (user, item) pairs in training data
Rte = {(u, i)} set of all observed (user, item) pairs in test data
Lu number of items in the item ranking list of user u
Πu item ranking list of user u
Πuj item ID of index j in Πu

Pu a set of positive lists of user u
Nu a set of negative lists of user u
Pg

u g-th list in Pu

N g
u g-th list in Nu

sp = |Pu| size of Pu

sn = |Nu| size of Nu

d ∈ R number of latent dimensions
Uu· ∈ R1×d user-specific latent feature vector
Vi· ∈ R1×d item-specific latent feature vector
r̂ui predicted preference of user u to item i
T iteration number

The loss function of SQL-Rank is then as follows after the log
transformation:

Lsql =

Lu∑
j=1

− ln
exp(σ(r̂uΠuj

))∑Lu

h=j exp(σ(r̂uΠuh
))

(2)

SQL-Rank also proposes a stochastic queuing process,
which shuffles the observed items and re-samples the unob-
served items in Πu in each training iteration. This process
helps deal with the sorting noise between the observed items,
and the neglect of the unobserved items [12].

However, for collaborative ranking with implicit feedback,
the listwise approaches based on the Plackett-Luce probability
still have two limitations:
Limitation 1. The preference comparison between the items
with the same feedback in the list is often too strict. From
implicit feedback, we only know which interaction has been
observed and which has not, then the preference comparison
relationship for the items with the same feedback is unknown.
These approaches simply assume that a user’s preference to a
certain item is greater than that to all the items behind it. This
assumption usually leads to the incorrect comparison between
the items with the same feedback. Even though SQL-Rank
uses a stochastic queuing process to alleviate the comparison
between the observed items, it does not take into account that
the unobserved items have the same problem.
Limitation 2. The preference comparison between the items
with different feedback are usually too weak. These ap-
proaches maintain the overall ranking of an item list. In
this list, the observed items are placed in the first half and
the unobserved items sampled from I\Iu are placed in the
second half. This may cause the preference gap between the
observed items and the unobserved items to be too small. For
example, the items at the back of the observed part and the
items at the front of the unobserved part are always treated
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similarly. According to collaborative ranking with implicit
feedback, the preference comparison between the observed
items and the unobserved items is important, which means that
weakening this relationship is likely to bring incorrect training
guidance. SQL-Rank alleviates this limitation by re-sampling
the unobserved items when constructing the new item list in
each iteration. However, the new item list still suffers from
this limitation, and the model may not learn enough useful
information when the unobserved part of the item list changes
constantly.

In order to solve these two limitations in the listwise
approaches based on the Plackett-Luce probability, we propose
an improved approach called SQL-Rank++, which contains
four variants, i.e., SQL-Rank++(P), SQL-Rank++(N), SQL-
Rank++(P vs. N) and SQL-Rank++(P + N). We also propose
two sampling strategies for efficient training. In the following
section, we will introduce our SQL-Rank++ and the sampling
strategies, and analyze how they solve these two limitations.

IV. THE PROPOSED APPROACH

To learn more accurate user preferences and solve the two
limitations mentioned above, we introduce some special auxil-
iary preference lists and then propose a novel listwise approach
called SQL-Rank++. The overall optimization problem is as
follows:

min
n∑

u=1

(Lsql + Laux) +Rθ (3)

where Lsql represents the loss function of SQL-Rank [12], and
Laux denotes the loss function contributed by the auxiliary
lists. For SQL-Rank++(P), SQL-Rank++(N), SQL-Rank++(P
vs. N) and SQL-Rank++(P + N), Laux can be formalized
as LP , LN , LPvs.N and LP+N , respectively. Notice that
Rθ = αu

2 ||Uu·||2F + αv

2 ||Vj·||2F is an L2 regularization term
used to avoid the overfitting, where αu and αv are the hyper-
parameters.

For each user u, we sample some lists with similar prefer-
ence as Πu to form a positive preference set Pu, and some
lists with different preference from Πu to form a negative
preference set Nu. Each auxiliary list consists of two parts: the
first part corresponds to the observed part of the original list,
and the second part corresponds to the unobserved part. These
two parts use different sampling processes, which will be
introduced in Section IV-A. In Section IV-B, we will describe
the four variants of our SQL-Rank++. We illustrate our SQL-
Rank++ in Figure 1 and describe the complete algorithm in
Section IV-C.

A. Sampling Strategies for Auxiliary Lists

In this section, we present two sampling strategies used
in our SQL-Rank++ to construct the set of auxiliary lists,
including a self-based strategy and a user similarity-based
strategy. The former samples from the original list and the
unobserved item set, and the latter samples from the neighbors’
and the dissimilar users’ lists. Each strategy has different
sampling processes for the positive list set Pu and the negative

list set Nu. We illustrate these two sampling strategies in
Figure 2.

1) Self-based sampling strategy: In this strategy, we sample
the positive list set Pu from the user u’s original list Πu, and
the negative list set Nu from the unobserved item set I\Iu of
user u.

Specifically, for each positive list, we shuffle the observed
and unobserved parts of the original list Πu, and combine them
to form a positive list. Performing this operation for sp times,
we can get the positive list set Pu of size sp. For each negative
list, we randomly sample Lu items from the unobserved item
set I\Iu of user u to construct a negative list. Performing this
operation for sn times, we can get the negative list set Nu of
size sn.

The intuition of this sampling strategy is that a user’s
preference to the items with the same feedback may be similar,
and the user’s preference to the observed items may be larger
than that to the unobserved ones.

2) User similarity-based sampling strategy: In this strategy,
we first define an indicator for distinguishing the neighbors
and the dissimilar users, and then randomly sample a set of
neighbors or dissimilar users for user u. We construct the
positive list set Pu and the negative list set Nu according
to the original lists of these neighbors or dissimilar users. We
use {cuw = |Iu ∩ Iw|/|Iu ∪ Iw| | w = 1, 2, . . . , n, w ̸= u} to
denote the similarity between user u and the other users. We
sort this set in descending order and then select the highest
H users as the neighbors of user u, while other users as
the dissimilar users. Following [33], we set H = 50 in the
experiments.

For each positive list, we first randomly sample a neighbor
w from the neighbor set of user u. Then we randomly sample
|Iu| items from the observed part of user w’s original list Πw

to form the observed part of the positive list, and Lu − |Iu|
items from the unobserved part of Πw to form the unobserved
part. For each negative list, we first randomly sample a
dissimilar user from the dissimilar user set of user u and
perform the same operation as above. Notice that the size of
the two parts in the auxiliary list should be the same as that
in the original list. Therefore, when the length of the sampled
list is not enough, repeated sampling is needed.

The intuition of this sampling strategy is that a user’s
preference may be similar to the preference of their neighbors,
rather than the users who are dissimilar.

B. Four Variants of SQL-Rank++

Since a positive auxiliary list maintains the semantic consis-
tency with the original list, we expect the model to make the
original list and the positive auxiliary list be close as much as
possible. For the negative auxiliary list and the original list,
we expect the model to reduce the similarity between them
due to the semantic inconsistency.

Because the preference comparison relationship for the
unobserved items is unknown, it is unable to define a clear
relative relationship between the unobserved part of the orig-
inal list and this part of any auxiliary list. Therefore, we treat

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:48:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1. Illustration of our SQL-Rank++. The approaches based on the Plackett-Luce probability, e.g., SQL-Rank (shown in the upper), have too strict constraints
between the items with the same feedback (e.g., backpack vs. light blue book, and toothbrush vs. yellow book), and too weak constraints between the items
with different feedback (e.g., grey shirt and light blue book vs. toothbrush and color shirt). We propose two sampling strategies to construct some positive
auxiliary lists which have similar semantics with the original list and some negative auxiliary lists which are opposite (shown in the bottom left corner). We
then have four variants of our SQL-Rank++ to jointly learn from the auxiliary lists and the original list to address these limitations (shown in the bottom
half). Specifically, our SQL-Rank++ constrains the user’s preference to the items with the same feedback to be close to each other, as well as expands the
preference difference between the items with different feedback (shown in the bottom right corner).

Fig. 2. Illustration of the self-based sampling strategy (shown in the upper)
and the user similarity-based sampling strategy (shown in the bottom).

the unobserved part of these auxiliary lists equally, regardless
of whether it comes from a positive one or a negative one.

The positive auxiliary list prompts the items with the same
feedback closer, thereby weakening the too strict constraints
described in Limitation 1. The negative auxiliary list in-
troduces more comparisons between the items with different
feedback, which in turn strengthens the too weak constraint
described in Limitation 2. Through these, we can train a
model that better captures the user’s true preference and then
address the two limitations faced by the listwise approaches
based on the Plackett-Luce probability.

1) SQL-Rank++(P): In this variant, we use the auxiliary
lists with similar preference as Πu in the positive preference
set Pu to solve the limitation of the too strict comparison
between the items with the same feedback. As previously
described, we treat the observed and unobserved parts of
each list separately. The loss function of SQL-Rank++(P) is
composed of these two parts: LP = LP (ob) + LP (un).
Observed part. Let Pg

u denote the g-th list in the positive

preference set Pu. We expect that a user’s preference on the
observed part of the original list Πu and the positive list Pg

u

are close. The objective function of this strategy is:

LP (ob) =
1

|Iu|

|Iu|∑
j=1

1

sp

sp∑
g=1

− ln(1− σ(|r̂uΠuj
− r̂uPg

uj
|)) (4)

where r̂uΠuj
and r̂uPg

uj
denote the predicted preference of

user u to item Πuj and item Pg
uj , respectively. Notice that sp

is the size of Pu.
Unobserved part. Since the relative relationship between the
original list and a positive auxiliary list on the unobserved part
is not as intuitive as that on the observed part, in order to avoid
introducing unnecessary noise in the modeling process, we
treat the unobserved part of these two equally, i.e., constrain
a user’s preference on the unobserved part to be also close.
The objective function is as follows:

LP (un) =

1

Lu − |Iu|

Lu∑
j=|Iu|+1

1

sp

sp∑
g=1

− ln(1− σ(|r̂uΠuj
− r̂uPg

uj
|)) (5)

2) SQL-Rank++(N): In this variant, we use the auxil-
iary lists with different preference from Πu in the negative
preference set Nu to solve the limitation of the too weak
preference comparison between the observed items and the
unobserved items. Same as SQL-Rank++(P), we have LN =
LN (ob) + LN (un).

As mentioned before, the target of the unobserved part on
all variants of our SQL-Rank++ is similar, the only difference
of LN (un) and LP (un) is the set of auxiliary lists they
use. Hence, we only describe the observed part of SQL-
Rank++(N).
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Observed part. Let N g
u denotes the g-th list in the negative

preference set Nu. We make a user’s preference to the j-th
observed item in the original list Πu larger than that to its
corresponding item in the negative list N g

u to improve the
preference comparison between the observed items and the
unobserved items. Furthermore, such a comparison relation-
ship can make better use of the important unobserved items
in implicit feedback. The objective function of this strategy is:

LN (ob) =
1

|Iu|

|Iu|∑
j=1

1

sn

sn∑
g=1

− ln(σ(r̂uΠuj
− r̂uN g

uj
)) (6)

where sn is the size of Nu. The difference between LP (ob)
and LN (ob) is that LP (ob) needs to make the user’s preference
to the two corresponding items close to each other, while
LN (ob) needs to make the user’s preference to the observed
item in the original list strictly greater than that to its corre-
sponding item in the negative list.

3) SQL-Rank++(P vs. N): When considering the combined
use of the positive auxiliary lists and negative auxiliary lists,
inspired by contrastive learning [27], [30], we propose a
joint training form called SQL-Rank++(P vs. N). The loss
function of SQL-Rank++(P vs. N) is LPvs.N = LPvs.N (ob)+
LPvs.N (un). For the same reason as that in Section IV-B2,
we only describe LPvs.N (ob).
Observed part. A contrastive learning approach usually in-
creases the similarity between the original sample and the
positive sample, and reduces the similarity between the orig-
inal sample and the negative sample. Similar to the idea
of contrastive learning, we propose a contrastive preference
function obj(r1, r2). Suppose we have two items p and q
sampled from the observed part of the original list Πu and
an auxiliary list Pg

u (or N g
u ), respectively, the contrastive

preference function of (u, q, p) can be written as:

obj(r̂up, r̂uq) =

{
1− σ(|r̂up − r̂uq|), if q ∈ Pg

u

1− σ(r̂up − r̂uq), if q ∈ N g
u

(7)

If q belongs to a positive auxiliary list Pg
u, then the closer

the preference of user u to items p and q, the greater the
value of obj(r̂up, r̂uq). In the other case, if q belongs to a
negative auxiliary list N g

u , then the larger the preference of
user u to item p than that to item q, the smaller the value
of obj(r̂up, r̂uq). According to this contrastive preference
function, we have the following loss function:

LPvs.N (ob) =

1

|Iu|

|Iu|∑
j=1

− ln

1
sp

∑sp
g=1 ϕ(Pg

uj)

1
sp

∑sp
g=1 ϕ(P

g
uj) +

∑sn
g=1 ϕ(N

g
u j)

(8)

where ϕ(Pg
uj) = exp(obj(r̂uΠuj

, r̂uPg
uj
)) and ϕ(N g

u j) =
exp (obj(r̂uΠuj

, r̂uN g
uj
)). Based on the descriptions in SQL-

Rank++(P) and SQL-Rank++(N), optimizing Equation (8)
can not only weaken the preference comparison between the
observed items but also strengthen the preference comparison
between the observed items and the unobserved items. Both

Limitation 1 and Limitation 2 can thus be solved at the same
time.

4) SQL-Rank++(P + N): We can also directly add the loss
functions of SQL-Rank++(P) and SQL-Rank++(N) together to
achieve the goal of simultaneously solving Limitation 1 and
Limitation 2. Then the objective function can be represented
as follows:

LP+N = LP + LN (9)

C. Algorithm

We use the stochastic gradient descent (SGD) based al-
gorithm to solve the optimization problem, and describe the
complete algorithm of SQL-Rank++ in Algorithm 1.

Algorithm 1: The algorithm of SQL-Rank++.
Input: R = {(u, i)}.
Output: U ∈ Rn×d and V ∈ Rm×d.

1: for t = 1, 2, . . . , T do
2: for u = 1, 2, . . . , n do
3: Generate a new original list Πu by stochastic queuing

process [12].
4: Generate a new positive auxiliary list set Pu and a new

negative auxiliary list set Nu by sampling.
5: end for
6: for u = 1, 2, . . . , n do
7: Update U via the gradients of Equation (3) by stochastic

gradient descent.
8: end for
9: for u = 1, 2, . . . , n do

10: Update V via the gradients of Equation (3) by stochastic
gradient descent.

11: end for
12: end for

V. EMPIRICAL EVALUATION

We conduct experiments to study the following three re-
search questions (RQs). RQ1) Does our SQL-Rank++ achieve
the state-of-the-art results? RQ2) How does the number of
auxiliary lists affect the performance of our SQL-Rank++?
RQ3) What is the impact of the observed and unobserved
parts in our SQL-Rank++?

A. Experiment Setup

1) Datasets: We use four public datasets, i.e., MovieLens
1M1, Netflix2, Alibaba20153 and Tmall3, to study the ef-
fectiveness of our SQL-Rank++. MovieLens 1M and Netflix
include 5-star digital ratings for movies provided by users
from two different movie platforms. We follow [26] and keep
ratings larger than 3 as the observed feedback. Alibaba2015
contains the records of users’ purchases and examinations to
items on the e-commerce platform. We treat both purchase and
examination records as the observed feedback. Tmall contains
users’ visit labels to merchants on the e-commerce platform,

1http://www.grouplens.org/
2https://www.netflix.com/
3https://tianchi.aliyun.com/dataset/
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including repeat and non-repeat buying. We treat the label of
both repeat and non-repeat buying as the observed feedback.

For MovieLens 1M and Netflix, we randomly sample half
of the observed feedback as the training data, and the rest
as the test data. We then randomly sample one record for
each user on average from the training data as the validation
data [26]. For Alibaba2015 and Tmall, we randomly sample
60% observed feedback as the training data, 20% as the test
data, and the rest 20% as the validation data [34]. We repeat
the above procedure three times to get three copies of each
dataset. All the experiment results are averaged on these three
copies. We report the statistics of all the processed datasets in
Table III.

TABLE III
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS, WHERE n, m,

|R| AND |Rte| DENOTE THE NUMBERS OF USERS, ITEMS, TRAINING
RECORDS AND TEST RECORDS, RESPECTIVELY.

Dataset n m |R| |Rte| |R|/(nm)

MovieLens 1M 6,040 3,952 287,641 287,640 1.21%
Netflix 5,000 5,000 77,936 77,936 0.31%

Alibaba2015 7,475 5,257 59,417 14,854 0.15%
Tmall 10,000 10,000 100,726 25,182 0.10%

2) Evaluation Metrics: We use two ranking-oriented top-K
evaluation metrics: precision and normalized discounted cu-
mulative gain (NDCG), denoted by Prec@K and NDCG@K.
Prec@K counts the proportion of items that are interacted
by a user in a top-K recommendation list. NDCG@K pays
attention to the positions of the items that a user interacts
with in a recommendation lists. Considering that a user usually
only cares about the first few items in a recommendation list
in an actual interactive environment, we set K = 5 in the
experiments.

3) Baselines: We compare our SQL-Rank++ with seven
state-of-the-art baselines modeling implicit feedback, includ-
ing two pointwise approaches, three pairwise approaches, and
two listwise approaches.
LogMF [4] is a pointwise approach that uses a logistic loss
function to increase the predicted score of an observed (user,
item) pair and reduce that of an unobserved (user, item) pair
to learn the latent representation of users and items.
FISMrmse [6] is a pointwise approach, which uses the items
observed by a user to represent the profile of the user and
RMSE as the loss function.
FISMauc [6] is a pairwise variant of FISMrmse, using AUC
as the loss function.
BPR [2] is a pairwise approach, which assumes that a user’s
preference to an observed item should be larger than that to
an unobserved item.
SetRank [24] defines the pairwise comparison relationship
between an observed item and a set of sampled unobserved
items.
SQL-Rank [12] is a listwise approach based on the Plackett-
Luce probability. SQL-Rank learns a user’s preference by

constructing a list with all the observed items and some
sampled unobserved items, and maximizing the Plackett-Luce
probability.
CLAPF-MRR [15] integrates the listwise loss based on the
mean reciprocal rank and the pairwise ranking to combine the
advantages of the two.

4) Implementation Details: We perform grid search ac-
cording to the performance of NDCG@5 on the first copy
of validation data for each dataset, to search the best val-
ues of the hyper-parameters in all approaches. For LogMF,
BPR, FISMrmse, FISMauc and CLAPF-MRR, we search the
regularization weights (αu, αv) from {0.1, 0.01, 0.001}, and
the learning rate γ from {0.1, 0.01, 0.001} [34]. We do not
add a decay rate to the above approaches [15]. For SetRank,
SQL-Rank and our SQL-Rank++, we search the regularization
weights (αu, αv) from {0.2, 0.6, 1.0, 1.4, 1.8}, and the learning
rate γ from {0.1, 0.2, 0.3, 0.4, 0.5}. We fix the decay rate of
the learning rate to 0.99 [24]. For CLAPF-MRR, we search
the best value of the iteration number T ∈ {1000, 2000,
. . . , 100000} [15], and T ∈ {10, 20, . . . , 1000} for the other
approaches. For all approaches in the experiments, we fix the
dimension d = 50.

B. Experimental Results

1) Performance Comparison (RQ1): We use S1 to represent
the self-based sampling strategy, and S2 to represent the user
similarity-based sampling strategy. The main experimental
results on the four datasets are shown in Table IV, from which
we can have the following observations.

The performance of our SQL-Rank++ with two sampling
strategies and four variants (a total of eight forms) is greatly
improved compared with the most closely related work SQL-
Rank in all cases. This shows that our analysis of the two
limitations (i.e., the preference comparison between the items
with the same feedback in the list is often too strict, and
the preference comparison between the items with different
feedback is usually too weak) of the listwise approaches based
on the Plackett-Luce probability is reasonable. Meanwhile,
our solution of leveraging some auxiliary preference lists to
constrain a user’s preference can help address the above two
limitations and train the model more appropriately.

The best-performing SQL-Rank++ variant outperforms all
seven pointwise, pairwise and listwise baselines on the four
datasets. This shows that the Plackett-Luce probability-based
listwise approaches has great potential. It is worth mentioning
that the experimental results are not completely consistent
with those reported in SetRank [24] and SQL-Rank [12].
The reason is that they remove a lot of (user, item) pairs
and inactive users during their data processing in order to
obtain adequate positive feedback. Taking MovieLens 1M as
an example, they only keep users with more than 60 ratings,
and randomly sample 50 of them in training [12]. And such
a dense dataset may not be common in real-world scenarios.

For the two sampling strategies, the performance of the user
similarity-based sampling strategy is better than that of the
self-based sampling strategy in most cases. One reason is that
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TABLE IV
RECOMMENDATION PERFORMANCE OF OUR SQL-RANK++ AND SEVEN BASELINES ON FOUR DATASETS. THE BEST RESULTS

ARE MARKED IN BOLD. NOTICE THAT OUR SQL-RANK++ CAN BE CONFIGURED WITH A SELF-BASED SAMPLING STRATEGY (S1)
OR A USER SIMILARITY-BASED SAMPLING STRATEGY (S2), AS WELL AS ONE OF THE FOUR COMBINATIONS OF POSITIVE (P)

AND NEGATIVE (N) AUXILIARY LISTS.

Models MovieLens 1M Netflix Alibaba2015 Tmall

Prec@5 NDCG@5 Prec@5 NDCG@5 Prec@5 NDCG@5 Prec@5 NDCG@5

LogMF 0.4209±0.0022 0.4317±0.0023 0.2279±0.0020 0.2490±0.0025 0.0307±0.0004 0.0536±0.0017 0.0180±0.0008 0.0285±0.0010

FISMrmse 0.3866±0.0052 0.4039±0.0065 0.2110±0.0025 0.2276±0.0033 0.0279±0.0005 0.0478±0.0008 0.0159±0.0002 0.0241±0.0007

FISMauc 0.3847±0.0007 0.3943±0.0018 0.2152±0.0009 0.2286±0.0013 0.0233±0.0004 0.0403±0.0002 0.0150±0.0004 0.0223±0.0007

SetRank 0.3808±0.0034 0.3909 ±0.0036 0.1870±0.0020 0.1970±0.0022 0.0261±0.0006 0.0434±0.0008 0.0152±0.0001 0.0233±0.0007

BPR 0.4324±0.0005 0.4439±0.0005 0.2354±0.0027 0.2540±0.0038 0.0298±0.0010 0.0515±0.0015 0.0172±0.0006 0.0265±0.0005

SQL-Rank 0.4416±0.0022 0.4590±0.0022 0.2216±0.0042 0.2335±0.0049 0.0248±0.0006 0.0420±0.0020 0.0154±0.0002 0.0236±0.0008

CLAPF-MRR 0.4329±0.0018 0.4447±0.0030 0.2379±0.0011 0.2570±0.0019 0.0330±0.0008 0.0571±0.0005 0.0180±0.0010 0.0279±0.0015

SQL-Rank++(S1)

P 0.4473±0.0032 0.4618±0.0030 0.2439±0.0031 0.2637±0.0040 0.0315±0.0002 0.0533±0.0011 0.0176±0.0003 0.0275±0.0005

N 0.4551±0.0011 0.4737±0.0013 0.2273±0.0037 0.2467±0.0055 0.0313±0.0004 0.0532±0.0008 0.0173±0.0003 0.0266±0.0008

P vs. N 0.4565±0.0032 0.4736±0.0034 0.2413±0.0027 0.2621±0.0041 0.0335±0.0010 0.0568±0.0008 0.0184±0.0003 0.0285±0.0008

P + N 0.4605±0.0022 0.4768±0.0023 0.2471±0.0033 0.2671±0.0036 0.0335±0.0008 0.0571±0.0006 0.0188±0.0006 0.0293±0.0011

SQL-Rank++(S2)

P 0.4610±0.0016 0.4769±0.0015 0.2473±0.0030 0.2676±0.0038 0.0315±0.0003 0.0537±0.0006 0.0181±0.0003 0.0280±0.0004

N 0.4666±0.0024 0.4840±0.0026 0.2480±0.0015 0.2685±0.0019 0.0338±0.0010 0.0573±0.0009 0.0180±0.0004 0.0279±0.0003

P vs. N 0.4658±0.0035 0.4841±0.0033 0.2450±0.0023 0.2661±0.0031 0.0339±0.0010 0.0578±0.0008 0.0191±0.0003 0.0293±0.0004

P + N 0.4611±0.0033 0.4761±0.0028 0.2550±0.0026 0.2760±0.0039 0.0346±0.0010 0.0593±0.0010 0.0192±0.0005 0.0300±0.0006

the auxiliary list constructed based on the neighbors or the
dissimilar users can introduce more comparison relationships,
so that the model can get more useful information. In partic-
ular, the self-based sampling strategy has a fixed number of
candidates in the observed part, while the user similarity-based
sampling strategy has a larger coverage.

The relative performance comparison between different
variants of our SQL-Rank++ is different on different datasets.
In most cases, the approaches that co-constraining the positive
and negative auxiliary lists (i.e., SQL-Rank++(P vs. N) and
SQL-Rank++(P + N)) are better than the approaches that only
constraining a certain auxiliary list (i.e., SQL-Rank++(P) and
SQL-Rank++(N)). These results can be observed in using both
sampling strategies on Alibaba2015 and Tmall, and the self-
based sampling strategy on MovieLens 1M and Netflix. For the
approaches with the user similarity-based sampling strategy
on MovieLens 1M and Netflix, the performance of SQL-
Rank++(P vs. N) is similar or even worse than that of SQL-
Rank++(P) or SQL-Rank++(N). Moreover, although SQL-
Rank++(P + N) is the best performing model in most cases,
it is worse than SQL-Rank++(P vs. N) and SQL-Rank++(N)
on MovieLens 1M with the user similarity-based sampling
strategy. One reason is that MovieLens 1M contains a smaller
number of items and Netflix contains a smaller number of
users, and there is a larger probability of introducing noise
when using the auxiliary lists owned by the neighboring and
dissimilar users.

2) Quantitative Study (RQ2): It can be seen from Equa-
tion (4) that the number of auxiliary lists is related to the
complexity of our SQL-Rank++. We study the influence of the
number of auxiliary lists, and report the results in Figure 3.

From Figure 3, we can see that the performance of our
SQL-Rank++ is similar when using different numbers of
auxiliary lists. As the number of auxiliary lists increases,

the performance of the different variants of our SQL-Rank++
fluctuates slightly within a certain range. The reason for this
situation is that we re-construct the auxiliary list in each
iteration, which can generate enough comparison relationships
to help the training of the model when using a few auxiliary
lists. Therefore, only a small number of auxiliary lists (or
even just one) are needed to achieve the desired performance,
too many auxiliary lists may introduce noise and increase the
difficulty of training.

The time complexity of SQL-Rank is O(nLud) [12], and
that of our SQL-Rank++ is O(nLud(1+g)) because it needs to
calculate g additional auxiliary lists on the basis of SQL-Rank.
However, the number g is often a small constant, which makes
our SQL-Rank++ have the same near-linear time complexity
O(nLud) as SQL-Rank.

3) Ablation Study (RQ3): To figure out the contribution
of Lob and Lun to the performance of our SQL-Rank++,
we conduct an ablation study as shown in Figure 4. Taking
SQL-Rank++(P) as an example, we compare the performance
of min

∑n
u=1(Lsql + LP (ob)) + Rθ (denoted as “observed”

in Figure 4) , min
∑n

u=1(Lsql + LP (un)) + Rθ (denoted as
“unobserved” in Figure 4) and the complete SQL-Rank++(P)
(denoted as “both” in Figure 4) on four datasets. Notice that
“observed” aims to solve the too strict constraints between
the observed items or the too weak constraints between the
observed items and the unobserved items. The purpose of
“unobserved” is only to solve the too strict constraints between
the unobserved items (i.e., we treat all unobserved items
equally). And “both” combines “observed” and “unobserved”
together.

For “observed” vs. “unobserved”, the experimental results
show that a user’s preference to the unobserved items needs
to be more constrained than that to the observed ones. In Fig-
ure 4, the NDCG@5 values of “unobserved” are comparable
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(b) MovieLens 1M-S2.
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(c) Netflix-S1.
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(d) Netflix-S2.
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(e) Alibaba2015-S1.
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(f) Alibaba2015-S2.
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(g) Tmall-S1.
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Fig. 3. Recommendation performance (NDCG@5) of our SQL-Rank++ with different numbers of auxiliary lists on four datasets.
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Fig. 4. Recommendation performance (NDCG@5) of our SQL-Rank++ with different architectures (i.e., ablation studies) on four datasets.

to or larger than that of “observed” in most cases. This means
that making a user’s preference to the unobserved items close
to each other is important for learning the true preference of
the user [17]. Mentions that the unobserved part of the original
list and the auxiliary lists can create more comparison relation-
ships than the observed part because of the large number of
the unobserved data, which can bring more useful information
to the training. In addition, the stochastic queuing process
of SQL-Rank has helped smooth the constraints between the
observed items. Therefore, the improvement of “unobserved”
is more significant than that of “observed”. We also find that
the user similarity-based sampling strategy has the potential
to capture the users’ true preferences from the neighbors’ and
the dissimilar users’ observed items. This feature makes it
possible for “observed” to surpasses “unobserved” (e.g., SQL-
Rank++(P) and SQL-Rank++(N) in Figure 4(b), and SQL-

Rank++(N) in Figure 4(d)).

For “both” vs. “observed” and “unobserved”, we can ob-
serve two different results depending on the sampling strategy
in Figure 4. For the self-based sampling strategy, in most cases,
constraining the observed and unobserved items at the same
time is better than constraining one of them separately. How-
ever, the performance of “unobserved” is better than that of
“both” on some variants (e.g., SQL-Rank++(P) in Figure 4(a),
SQL-Rank++(N) in Figure 4(c), and SQL-Rank++(P vs. N)
and SQL-Rank++(P + N) in Figure 4(e)). Since the self-
based sampling strategy can only generate a fixed number of
candidates when constructing the auxiliary lists, constraining
the observed and unobserved items at the same time may add
more penalty on some unobserved items. Compared with con-
straining observed items or unobserved items separately, this
may result in the loss of some potential preferred items. For
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the user similarity-based sampling strategy, the performance of
“both” is comparable to or better than that of “observed” and
“unobserved” in all cases. This means that constraining the
observed and unobserved items at the same time (“both”) can
achieve better performance when the comparison relationships
are adequate.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel listwise recommendation
approach, i.e., SQL-Rank++, for modeling users’ implicit
feedback. Our SQL-Rank++ addresses two fundamental limi-
tations in the approaches based on the Plackett-Luce probabil-
ity, i.e., too strict and too weak constraints between the items
with the same feedback and different feedback, respectively.
Specifically, we design two sampling strategies to construct
some special auxiliary lists, including some positive lists and
some negative lists, to assist learning of the user preferences
from the original list, and finally obtain four variants of
our SQL-Rank++ with different combinations of the positive
and negative lists. Extensive empirical studies on four public
datasets show the effectiveness of our SQL-Rank++ over sev-
eral competitive pointwise, pairwise and listwise approaches.

For future works, we are interested in generalizing our SQL-
Rank++ from a shallow model to a deep one in order to capture
more complex relations among the users and items. We are
also interested in exploiting more types of implicit feedback
such as adds-to-cart and purchases [29] and pre-training user
representations [35] in the proposed listwise learning paradigm
so as to learn the user preferences more accurately.
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