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Abstract—Uplift modeling has shown very promising results
in online marketing. However, most existing works are prone
to the robustness challenge in some practical applications. In
this paper, we first present a possible explanation for the above
phenomenon. We verify that there is a feature sensitivity problem
in online marketing using different real-world datasets, where
the perturbation of some key features will seriously affect the
performance of the uplift model and even cause the opposite
trend. To solve the above problem, we propose a novel robustness-
enhanced uplift modeling framework with adversarial feature
desensitization (RUAD). Specifically, our RUAD can more effec-
tively alleviate the feature sensitivity of the uplift model through
two customized modules, including a feature selection module
with joint multi-label modeling to identify a key subset from the
input features and an adversarial feature desensitization module
using adversarial training and soft interpolation operations to
enhance the robustness of the model against this selected subset
of features. Finally, we conduct extensive experiments on a public
dataset and a real product dataset to verify the effectiveness of
our RUAD in online marketing. In addition, we also demonstrate
the robustness of our RUAD to the feature sensitivity, as well as
the compatibility with different uplift models.

Index Terms—Uplift modeling, Robustness, Adversarial train-
ing, Feature desensitization

I. INTRODUCTION

One of the critical tasks in each service platform is to

increase user engagement and platform revenue through online

marketing, which uses some well-designed incentives and

then delivers them to the platform users, such as coupons,

discounts, and bonuses [1]. Since each incentive usually comes

with a cost, successful online marketing must accurately find

the corresponding sensitive user group for each to avoid

ineffective delivery. To achieve this goal, an important step is

that the marketing model needs to identify the change in the

user’s response caused by different incentives, and only deliver

each incentive to its high-uplift users. This involves a typical

causal inference problem, i.e., the estimation of the individual

treatment effect (ITE) (also known as the uplift), since we

usually only observe one type of user response in practice,

which may be for a certain incentive (i.e., treatment group) or

no incentive (i.e., control group). Therefore, previous works

� Corresponding Author

have proposed uplift modeling and verified its effectiveness in

online marketing [2].

The existing methods for uplift modeling can broadly be

categorized into three research lines: 1) Meta-learner-based.

The basic idea of this line is to estimate the users’ responses

by using existing predictive models as the base learner. Two

of the most representative methods are S-Learner and T-

Learner [3], which adopt a global base learner and two base

learners corresponding to the treatment and control groups,

respectively. 2) Tree-based. The basic idea of this line is to

employ a hierarchical tree structure to systematically partition

the user population into sub-populations that exhibit sensitivity

to specific treatments [4]. An essential step involves modeling

the uplift directly by applying diverse splitting criteria. 3)

Neural network-based. The basic idea of this line is to leverage

the power of neural networks to develop estimators that are

both intricate and versatile in predicting the user’s response.

Note that most of them can be seen as the variants of meta-

learners. We focus on the neural network-based line because

they can be more flexibly adapted to modeling the complex

feature interactions in many industrial systems. Furthermore,

due to the widespread use of various neural network models in

these systems, research on this line is also easier to seamlessly

integrate than alternative lines.

Although existing works on uplift modeling have shown

very promising results, they generally suffer from the robust-

ness challenge in many real-world scenarios [5], and little

research has been conducted to reveal how such challenges

arise. In this paper, we first identify a feature sensitivity

problem in the uplift model as a possible explanation for

the above phenomenon using different real-world datasets.

Specifically, for each dataset, we randomly select 30% of all

continuous-valued features and apply a Gaussian noise with

η ∼ N (0, 0.052) as the perturbation to them. We repeat this

process multiple times to obtain a set of copies with different

feature subsets. Finally, we train the same uplift models for

each copy and compare their performance with that obtained

on the original dataset. Due to space limitations, we show

the results of using S-Learner as the uplift model on the

Production dataset used in the experiment in Fig. 1, and similar
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(a) Without perturbation (b) Perturbation on feature set 1

(c) Perturbation on feature set 2 (d) Perturbation on feature set 3

Fig. 1. Bar graphs of predicted uplift with 5 bins, w.r.t the origin dataset (i.e.,
(a)) and three kinds of varieties (i.e., (b)-(d)). For each dataset, we randomly
select 30% of all continuous-valued features and apply a Gaussian noise with
η ∼ N (0, 0.052) as perturbation while constraining ‖η‖∞ < 0.1. Note that
a good uplift model will usually have a bar graph sorted in descending order.

results are also found on other datasets or uplift models. We

can find that there are some sensitive key features and a slight

perturbation to them will seriously affect the performance of

the uplift model, and even an opposite trend appears.

The above empirical findings suggest that the sensitivity of

uplift models to these key features may be one of the important

reasons for their robustness challenges. Therefore, to alleviate

the feature sensitivity problem, we propose a novel robustness-

enhanced uplift modeling framework with adversarial feature

desensitization, or RUAD for short. Our RUAD contains two

new custom modules that match our empirical findings and

can be integrated with most existing uplift models to improve

their robustness. Specifically, a feature selection module with

joint multi-label modeling will be used to identify the desired

set of key sensitive features from the original dataset under

the supervision of a trade-off optimization objective. Then,

an adversarial feature desensitization module performs an

adversarial training operation and a soft interpolation operation

based on the selected subset of features, to force the model

to reduce sensitivity to them, thus effectively truncating a key

source of robustness challenges. Finally, we experimentally

verify the effectiveness of our RUAD on a public dataset and

a real product dataset.

II. PRELIMINARIES

To formalize the problem, we follow the Neyman-Rubin

potential outcome framework [6], to define the uplift modeling

problem. Let the observed sample set be D = {xi, ti, yi}ni=1.

Without loss of generality, for each sample, assuming yi ∈
Y ⊂ R is a continuous response variable, xi ∈ X ⊂ R

N is

a vector of features, and ti ∈ {0, 1} denotes the treatment

indicator variable, i.e., whether to get an incentive delivery.

Note that the proposed framework can also be easily extended

to other types of uplift modeling problems. For a user i,

the change in user response caused by an incentive ti, i.e.,

individual treatment effect or uplift, denoted as τi, is defined as

the difference between the treatment response and the control

response,

τi = yi(1)− yi(0), (1)

where yi(0) and yi(1) are the user responses of the control

and treatment groups, respectively.

In the ideal world, i.e., obtaining the responses of a user

in both groups simultaneously, we can easily determine the

uplift τi based on Eq.(1). However, in the real world, usually,

only one of the two responses is observed for any one user.

For example, if we have observed the response of a customer

who receives the discount, it is impossible for us to observe

the response of the same customer when they do not receive

a discount, where such responses are often referred to as

counterfactual responses. Therefore, the observed response can

also be described as,

yi = tiyi(1) + (1− ti)yi(0). (2)

For the brevity of notation, we will omit the subscript i in the

following if no ambiguity arises.

As mentioned above, the uplift τ is not identifiable since

the observed response y is only one of the two necessary

terms (i.e., y(1) and y(0)). Fortunately, with some appropriate

assumptions [1], we can use the conditional average treatment

effect (CATE) as an estimator for the uplift, where CATE is

defined as,

τ(x) = E (Y (1) | X = x)− E (Y (0) | X = x)

= E(Y | T = 1, X = x)︸ ︷︷ ︸
μ1(x)

−E(Y | T = 0, X = x)︸ ︷︷ ︸
μ0(x)

. (3)

Intuitively, the desired objective can be described as the differ-

ence between two conditional means τ(x) = μ1(x)− μ0(x).

III. METHODOLOGY

A. Architecture

The proposed robustness-enhanced uplift modeling frame-

work with adversarial feature desensitization, or RUAD for

short, is shown in Fig. 2. Given a sample {x, t, y}, where

x may include the categorical features or the numerical

features, and the categorical features will be converted into

low-dimensional dense vectors through an encoding layer. The

feature selection module with joint multi-label training will

train a masker m(x) with the temperature weights on all the

input features to filter the desired key features. We will also

adopt a joint optimization involving the true response y and the

transformed response y∗ as a trade-off supervision objective of

the process to further ensure that the selected features conform

to the desired properties. After receiving the sample xm

after feature selection, the adversarial feature desensitization

module first uses an adversarial training operation to obtain the

adversarial example xadv with the largest perturbation on the

key feature level and then uses the soft interpolation operation

to combine it with the masked sample to obtain a milder

adversarial example x̃adv . Finally, we jointly train the model
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Fig. 2. The architecture of our RUAD. The propensity network π(x) is pre-trained to calculate the transformed response y∗. The left is the feature selection
module (FS), which leverages a masker to select key sensitive features for jointly modeling transformed response y∗ and user response y. The right is an
adversarial feature desensitization module (AFD) to reduce the sensitivity of the base uplift model to these key features. Specially, Lo and Lr are used for
FS, while La is used for AFD. The detailed form of the loss function is presented in Eq.(4).

with the adversarial samples and observed sample sets to free

the model from feature sensitivity, and the final optimization

objective function of our RUAD can be expressed as follows,

min
θ

LRUAD = Lo + Lr + La + λ‖θ‖, (4)

where Lo, Lr, and La denote the prediction loss of the trans-

formed and true responses for the feature selection module,

and the adversarial loss for the adversarial feature desen-

sitization module, respectively. λ and ‖θ‖ are the trade-off

parameters and the regularization terms. Next, we describe

each module in detail based on the training process.

B. Base Model
Since our RUAD is model-agnostic, it can be integrated

with most existing uplift models. For the convenience of

description, we use S-Learner [3] as the base model for an

example, but different uplift models will be integrated into

the experiments to verify the compatibility of our RUAD.

In S-Learner, the samples from the treatment group and the

control group will be distinguished by a group index and

trained through a shared base learner. During inference, the

group index of each sample will be modified to obtain another

counterfactual conditional mean function required in Eq.(3).

C. Feature Selection Module with Joint Multi-Label Modeling
Based on our experimental findings in Fig. 1, it can be

found that the perturbation of only some of the key features

will cause significant performance changes in the uplift model,

i.e., not all the features have sensitivity problems. Therefore,

to solve the feature sensitivity problem suffered by the uplift

model, we first need to enable the uplift model to identify

the key sensitive features we expect to obtain from all the

input features. This involves a feature selection process and

a reasonable optimization objective that guides the process

to perform correctly. Based on this idea, our RUAD first

formulates a feature selection module with joint multi-label

training. Note that although feature selection has been exten-

sively studied in different research areas, including different

designs for selection strategies or guidance objectives [7], it

is still less addressed in uplift modeling.

1) Feature Selection Process: In this paper, we utilize

a neural network-based masking function, denoted as ŵ(·),
to determine the contribution of each feature in the uplift

modeling. An additional Gumbel-Softmax trick [8] is used

to constrain the model to obtain an approximate k-hot mask

vector m(x). The κ-ratio features with the largest contribution

are regarded as desired key features, while the rest are regarded

as irrelevant or redundant ones. The m(x) is formulated as,

m(x) = Gumbel-Softmax(ŵ(x), κN) ∈ R
N , (5)

where k = �κN� ∈ Z+ is the number of features expected to

be obtained, N is the number of input features. Specifically,

in Eq.(5), let z = ŵ(x) ∈ R
N be a probability vector, then for

any feature dimension j ∈ {1, . . . , N}, we have zj ≥ 0 and∑
j zj = 1. Based on a pre-defined temperature weight ζ > 0,

the calculation of each feature dimension in the mask vector

can be expressed as [9],

mj = max
l∈{1,...,k}

exp
((
log zj + ξlj

)
/ζ

)
∑N

j′=1 exp
((

log zj′ + ξlj′
)
/ζ

) , (6)

where l ∈ {1, . . . , k} denotes the index of the selected feature,

ξlj = − log
(− log ul

j

)
, and ul

j ∼ Uniform(0, 1) denotes a

uniformly distributed sampling. Note that for simplicity, we

follow the setup of previous work [9], i.e., ζ = 0.5. Finally,

we can get the masked samples xm by multiplying the original

samples x with the resulting mask vector m(x),

xm = x	m(x), (7)

where 	 denotes the element-wise multiplication.
2) Joint Multi-Label Modeling: The success of the feature

selection process largely depends on a reasonable guiding op-

timization objective. Most of the existing uplift models adopt

a traditional optimization objective for response modeling,

which directly constrains the model to fit the true response

y of each sample,

Lr = L (μt(x), y(t)) . (8)

This can ensure the coherent prediction of the model on the

user response. However, we can find that it is not consistent
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with the desired objective (i.e., Eq.(3)), and this will make the

performance of the uplift model easily uncontrollable.

On the other hand, there is little work focusing on estab-

lishing the link between the user responses y and the expected

uplift effect τ [10], among which the transformed response is

one of the most representative ways. The specific form of the

transformed response is shown in Eq.(9),

y∗ =
y

π(x)
· t− y

1− π(x)
· (1− t), (9)

where π(x) is the propensity score estimation function and is

usually modeled by a neural network in practice. The Eq.(9)

transforms the observed true response y into y∗, such that the

expected uplift predictions τ equals the conditional expecta-

tion of the transformed response y∗. Since the transformed

response is a consistent unbiased estimator of the uplift effect

τ , we can fit it with the uplift prediction of the base model to

improve the base model’s ability to capture the uplift effect,

ŷ∗x = μ1(x)− μ0(x). (10)

However, using only Eq.(10) as the objective may also cause

the predicted response of the model to violate the true response

of the user, i.e., damaging the coherent prediction.

Therefore, to better guide the training of the above feature

selection process to obtain the desired key features that have

a greater impact on the performance of the uplift model, we

define a joint multi-label trade-off optimization objective,

Lo + Lr = αL (
ŷ∗xm

, y∗
)
+ (1− α)L (μt(xm), y(t)) , (11)

where α is the loss weight, and note that each prediction is

based on masked samples xm after feature selection.

D. Adversarial Feature Desensitization Module

After obtaining the desired key features, the next key

step is how to effectively reduce the sensitivity of the uplift

model to these sensitive features during its training process.

Based on the empirical findings in Fig. 1, we find that the

feature sensitivity is reflected in the inadaptability of the uplift

model to the perturbations on these key features. Given that

existing works [11] show that adversarial training with feature

importance can effectively address the limitation of adversarial

non-robust features, our RUAD formalizes an adversarial fea-

ture desensitization module, including an adversarial training

operation and a soft interpolation process.

1) Adversarial Training Operation: In this paper, we fol-

low the virtual adversarial training framework (VAT) [12] to

obtain ideal adversarial samples. Specifically, to strengthen the

interference of adversarial samples on the model’s uplift effect

estimation, we first modify the original adversarial loss to a

form based on the transformed response,

max
xadv

L(ŷ∗adv, ŷ∗), (12)

where ŷ∗adv is estimated by using xadv as input in Eq.(10).

Then, we perform the search process based on the power

iteration method proposed by VAT, where new adversarial

samples obtained at each iteration are calculated as follows,

x
(z+1)
adv = x

(z)
adv + ε · ∇xadv

L(ŷ∗adv, ŷ∗)
‖∇xadv

L(ŷ∗adv, ŷ∗)‖2
	m(x), (13)

where ε is a hyper-parameter to control the step size of the

perturbation, and z is the number of iterations. Note that we

will use the masked samples after feature selection as the

initialization of this search process, i.e., x
(0)
adv = xm, and

apply the same mask m(x) to the perturbations to ensure that

adversarial training is only performed on selected key features.

2) Soft Interpolation Process: Since the adversarial train-

ing operation and the feature selection module are jointly

trained, excessively large perturbations on some features in

the early stages of model training may damage the effect of

feature selection. To control the magnitude of the adversarial

perturbation within a more moderate level, we integrate the

obtained adversarial examples (i.e., x
(Z)
adv) and the received

original samples (i.e., x
(0)
adv or xm) in a soft interpolation form.

Specifically, the final adversarial examples can be obtained as

follows,

x̃adv = γ ∗ x(0)
adv + (1− γ) ∗ x(Z)

adv, (14)

where γ ∼ Uniform(0, 1), and Z is the number of iterations

for the power iteration method. After obtaining ideal adver-

sarial examples, we expect the uplift model to adapt to them

during training. Therefore, we introduce an adversarial loss to

constrain the model not to having large prediction differences

between the adversarial examples and the original samples,

La = βL(ỹ∗adv, ŷ∗), (15)

where β is the adversarial loss weight.

IV. EXPERIMENTS

A. Experiment Setup

1) Datasets: To compare the model performance from

an uplift ranking perspective, we use two datasets to show

the effectiveness of our training framework: 1) IHDP [13].

The IHDP dataset is utilized as a semi-synthetic dataset to

assess predicted uplift. This evaluation involves the synthetic

generation of counterfactual outcomes based on the original

features, along with the introduction of selection bias. The

resulting dataset contained 747 subjects (608 control and 139

treated) with 25 features (6 continuous and 19 binary features)

that described both the characteristics of the infants and the

characteristics of their mothers. t = 1 represents that the

subject is provided with intensive, high-quality childcare and

home visits from a trained healthcare provider. 2) Production.

This dataset comes from an industrial production environment,

one of the largest short-video platforms in China. For such

kind of short video platforms, clarity is an important user

experience indicator. A decrease in clarity may lead to a

decrease in users’ playback time. Therefore, through random

experiments within a week, we provided high-clarity videos

(t = 1) to the treatment group, and low-clarity videos (T = 0)

to the control group. We count the total viewing time of users’
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TABLE I
OVERALL COMPARISON BETWEEN OUR MODELS AND THE BASELINES ON IHDP AND PRODUCTION DATASETS.

Methods IHDP Dataset Production Dataset
q̂ (5 bins) ρ̂ (5 bins) q̂ (10 bins) ρ̂ (10 bins) q̂ (5 bins) ρ̂ (5 bins) q̂ (10 bins) ρ̂ (10 bins)

S-NN 0.5455 ± 0.0698 0.4879 ± 0.0784 0.5071 ± 0.0674 0.4576 ± 0.0643 1.2213 ± 0.0104 0.4424 ± 0.0122 1.1766 ± 0.0076 0.3987 ± 0.0156
T-NN 0.6233 ± 0.0731 0.5098 ± 0.0541 0.6427 ± 0.0804 0.5386 ± 0.0459 1.7244 ± 0.0056 0.6766 ± 0.0231 1.8102 ± 0.0064 0.5988 ± 0.0133

Causal Forest 0.7991 ± 0.0002 0.8204 ± 0.0001 0.8185 ± 0.0003 0.7994 ± 0.0002 1.7189 ± 0.0002 0.7137 ± 0.0001 1.7002 ± 0.0002 0.6899 ± 0.0002
TO-NN 0.8301 ± 0.0922 0.7944 ± 0.0913 0.8233 ± 0.0981 0.8102 ± 0.0897 2.1798 ± 0.0089 0.7666 ± 0.0113 2.2030 ± 0.0075 0.6388 ± 0.0121
TARNet 0.7233 ± 0.1022 0.7603 ± 0.0605 0.7408 ± 0.0985 0.7780 ± 0.0806 0.9504 ± 0.0051 0.3454 ± 0.0165 0.6799 ± 0.0096 0.3089 ± 0.0145

CFRwass 0.7487 ± 0.0893 0.7463 ± 0.0703 0.7463 ± 0.0703 0.7291 ± 0.0699 0.9466 ± 0.0047 0.4666 ± 0.0137 0.8996 ± 0.0099 0.5677 ± 0.0102
CFRmmd 0.7396 ± 0.0912 0.7542 ± 0.0851 0.7782 ± 0.0925 0.7298 ± 0.0945 0.9608 ± 0.0038 0.6785 ± 0.0228 1.0452 ± 0.0088 0.6887 ± 0.0152
Dragonnet 0.8374 ± 0.0721 0.8094 ± 0.0642 0.8305 ± 0.0795 0.8575 ± 0.0844 1.6453 ± 0.0102 0.4999 ± 0.0254 1.8308 ± 0.0071 0.6544 ± 0.0164

CITE 0.8099 ± 0.1120 0.7996 ± 0.0839 0.8277 ± 0.0742 0.7893 ± 0.1198 0.8467 ± 0.0108 0.5233 ± 0.0146 0.8866 ± 0.0121 0.6017 ± 0.0221

RUAD 0.9021 ± 0.0967 0.8184 ± 0.0634 0.9127 ± 0.0847 0.8248 ± 0.0821 2.4433 ± 0.0044 0.6877 ± 0.0132 2.3733 ± 0.0083 0.7288 ± 0.0137

short videos in a week and quantify the impact of definition

degradation on user experience. The resulting dataset contains

more than 3.6 million users (1.82 million treat and 1.85 million

control) with 123 features (108 continuous and 15 categorical

features) describing user relative characteristics.

2) Baselines: We compare RUAD with S-Learner (S-
NN) [3], T-Learner (T-NN) [3], Causal Forest [14], Trans-
formed Outcome (TO-NN) [10], which are the representative

methods in uplift modeling.

3) Evaluation Metrics: Following the setup of previous

work [2], we employ two evaluation metrics commonly used

in uplift modeling, i.e., the Qini coefficient q̂, and Kendall’s
uplift rank correlation ρ̂.

4) Implementation Details: We implement all baselines

and our RUAD based on Pytorch 1.10, with Adam as the

optimizer and a maximum iteration count of 30. We use the

qini coefficient as a reference to search for the best hyper-

parameters. We also adopt an early stopping mechanism with

a patience of 5 to avoid over-fitting to the training set.

B. Overall Performance

We present the comparison results of IHDP and Production

datasets in Table I, and we can observe that our RUAD

outperforms other baselines in most cases. Note that we

use q̂ as the reference for hyperparameter search, and have

a significant advantage on this metric while maintaining a

competitive result on other metrics. This demonstrates the

effectiveness of our RUAD, where the carefully designed

two modules can effectively collaboratively discover sensitive

key features and perform adversarial feature desensitization to

improve the model’s performance.

C. Ablation Study

Next, we conduct the ablation studies of our RUAD and

analyze the role played by each module. We sequentially

remove the two components of the RUAD, i.e. the feature se-

lection module (FS) and the adversarial feature desensitization

module (AFD). We construct three variants of RUAD, which

are denoted as RUAD (w/o FS-JMM), RUAD (w/o FS), and

RUAD (w/o AFD). Note that RUAD (w/o FS-JMM) represents

that we only use the response as the training label of the base

uplift model. We present the results in Table II and we can see

that removing any part may bring performance degradation.

TABLE II
RESULTS OF THE ABLATION STUDIES ON THE PRODUCTION DATASET.

Methods q̂ (5 bins) ρ̂ (5 bins) q̂ (10 bins) ρ̂ (10 bins)

RUAD (w/o FS-JMM) 2.1910 ± 0.0083 0.5231 ± 0.0092 2.1876 ± 0.0102 0.5443 ± 0.0076
RUAD (w/o FS) 2.3224 ± 0.0079 0.6890 ± 0.0143 2.3733 ± 0.0142 0.6774 ± 0.0055

RUAD (w/o AFD) 2.1100 ± 0.0028 0.5477 ± 0.0122 2.1764 ± 0.0088 0.6088 ± 0.0104
RUAD 2.4433 ± 0.0044 0.6766 ± 0.0132 2.3766 ± 0.0083 0.7288 ± 0.0137

D. Robustness Evaluation
To analyze whether our RUAD can effectively solve the

feature sensitivity problem shown in Fig. 1, under the premise

of strictly aligning the experimental settings (i.e., the same

feature selection and perturbation), we perform a robustness

evaluation by replacing the basic uplift model with our RUDA.

We present the results in Fig. 3. By comparing Fig. 1 and

Fig. 3, we can find that after applying our RUAD and obtaining

a well-trained deep uplift model, the results of the uplift bar

become more stable than before. This observation indicates

that our RUAD can improve the feature-level robustness of

the model.

(a) Without perturbation (b) Perturbation on feature set 1

(c) Perturbation on feature set 2 (d) Perturbation on feature set 3

Fig. 3. Bar graphs of predicted uplift with 5 bins, w.r.t the origin dataset
(i.e., (a)) and three kinds of varieties (i.e., (b)-(d)). We present the results of
our RUAD with S-NN as the base uplift model.

E. Compatibility Evaluation (RQ4)
To verify the effectiveness of our RUAD on different uplift

models, except for S-NN, we also combine it with two typical
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models, i.e., T-NN, and Dragonnet, in our experiments. The

results of the Production datasets are shown in Fig. 4. We can

find that integrating our RUAD on different uplift models can

always achieve a performance improvement. This suggests that

our RUAD can serve as a general framework to improve the

accuracy and robustness of uplift models.

(a) Qini coeffcient (b) Kendall uplift rank correlation

Fig. 4. Performance of our RUAD with three typical base uplift models on the
Production dataset, i.e. S-NN, T-NN and Dragonnet. We evaluate the results
by using the Qini coefficient and Kendall uplift rank correlation with 5 bins.

V. RELATED WORKS

Uplift modeling has received much attention for online

marketing in recent years [1]. Research in this area has focused

on various aspects of uplift modeling, including methods for

model building, performance evaluation, and real-world appli-

cations. For binary outcome, the intuitive approach to model

uplift is to build two classification models [3]. This consists

of two separate conditional probability models, one for the

treated users, and the other for untreated users. This method

is simple and flexible, but it can not mitigate the influence

of disparity in feature distributions between treatment and

control groups. To directly model the uplift, a transformed

response approach [10] is proposed, but it heavily relies on

the accuracy of the propensity score. For continuous outcome,

Causal Forest [14] is a random forest-like algorithm for uplift

modeling. It uses the causal tree as its base learner, which

is a general framework with theoretical guarantees. With the

development of deep learning in causal inference, there are

many works proposed that focus on ITE estimation. TARNet

[15] is a two-head structure like T-Learner, but the information

between two heads is shared by a representation layer. CFRNet

leverages the distance metrics (MMD and WASS) based on the

structure of TARNet to balance the representation between

the two heads. To solve the sample imbalance between the

treatment and control groups, Dragonnet [16] designs a tree-

head structure, which uses a separated head to learn the

propensity score. The propensity score is commonly used in

ITE estimation. CITE [17] uses it to distinguish the positive

and negative samples, and then builds a contrastive learning

structure. Unlike the above methods, our RUAD builds the

transformed outcome and conditional means together, which

can leverage the deep neural network to obtain better feature

representations for uplift modeling.

VI. CONCLUSION

In this paper, to address the feature sensitivity problem

existing in most uplift modeling methods, we propose a robust-

enhanced uplift modeling framework with adversarial feature

desensitization (RUAD). RUAD consists of two customized

modules: 1) the feature selection module with joint multi-

label modeling selects the key sensitive features for the uplift

prediction, which can help get a more accurate and robust

uplift prediction; and 2) the adversarial feature desensitization

module adding perturbations on the key sensitive features

can help solve the feature sensitivity problem. We conduct

extensive evaluations to validate the effectiveness of RUAD

and demonstrate its robustness to the feature sensitivity issue

and the compatibility with different uplift models.
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