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Abstract. A large-scale industrial recommendation platform typically
consists of multiple associated scenarios, requiring a unified click-through
rate (CTR) prediction model to serve them simultaneously. Existing
approaches for multi-scenario CTR prediction generally consist of two
main modules: i) a scenario-aware learning module that learns a set
of multi-functional representations with scenario-shared and scenario-
specific information from input features, and ii) a scenario-specific pre-
diction module that serves each scenario based on these representa-
tions. However, most of these approaches primarily focus on improv-
ing the former module and neglect the latter module. This can result
in challenges such as increased model parameter size, training diffi-
culty, and performance bottlenecks for each scenario. To address these
issues, we propose a novel framework called OptMSM (Optimizing
Multi-Scenario Modeling). First, we introduce a simplified yet effective
scenario-enhanced learning module to alleviate the aforementioned chal-
lenges. Specifically, we partition the input features into scenario-specific
and scenario-shared features, which are mapped to specific informa-
tion embedding encodings and a set of shared information embeddings,
respectively. By imposing an orthogonality constraint on the shared
information embeddings to facilitate the disentanglement of shared infor-
mation corresponding to each scenario, we combine them with the spe-
cific information embeddings to obtain multi-functional representations.
Second, we introduce a scenario-specific hypernetwork in the scenario-
specific prediction module to capture interactions within each scenario
more effectively, thereby alleviating the performance bottlenecks. Finally,
we conduct extensive offline experiments and an online A/B test to
demonstrate the effectiveness of OptMSM.
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1 Introduction

Click-through rate (CTR) prediction is a crucial component in online recommen-
dation platform [3,5,19,23], which aims to predict the probability of candidate
items being clicked and return top-ranked items for each user. In practice, a
business is usually divided into different scenarios based on different user groups
or item categories [4,6,20], and the resource overhead of customizing a propri-
etary CTR prediction model for each scenario is too high. Therefore, designing
and deploying a unified CTR prediction model to efficiently serve all scenar-
ios is a realistic challenge for a large-scale industrial recommendation platform.
Taking the Tencent Licaitong financial recommendation platform used in the
online experiment as an example, as shown in Fig. 1, these scenarios include
the homepage (HP), balanced investment portfolio page (BIP), and aggressive
investment portfolio page (AIP). Specifically, HP is the first page that each user
interacts with, where the users usually browse the items without specific intent.
The categories of items are mixed. The BIP and AIP pages list the items with
corresponding categories for the users with different specific intents, respectively.
We focus on how to effectively utilize all the user interactions in multiple sce-
narios to obtain a desired CTR prediction model.

Fig. 1. The scenarios in Tencent Licaitong financial recommendation platform.

Different from single-scenario modeling [35], multi-scenario modeling (MSM)
for CTR prediction is proposed in previous works to address the above goals.
Existing works for MSM usually adopt the idea of multi-task learning to model
the relationship between different scenarios [17,26,36]. They usually contain two
main modules, i.e., the scenario-aware learning module and the scenario-specific
prediction module. The former is used to learn versatile scenario-aware rep-
resentations, where scenario-shared and scenario-specific information are cap-
tured simultaneously. The latter uses a scenario-specific architecture to predict
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the corresponding scenario based on scenario-aware representations. Obviously,
the scenario-aware learning module carries more learning burden during train-
ing, and most of the existing works focus on improving the effectiveness of
this module in modelling the multi-functional representations, where increas-
ingly complex architectures are proposed [2,11,13,25,31,34,37]. Although these
works have shown promising results, these complex architectures also increase
both the model complexity and the training cost, which becomes an obstacle
to generalization to more business scenarios. On the other hand, improvements
for scenario-specific prediction modules are usually neglected in previous works,
i.e., they only utilize simple fully-connected layers as the architecture of the
predictor, which may lead to performance bottlenecks within each scenario.

In this paper, to address the above problems, we propose a novel Optimizing
Multi-Scenario Modelling (OptMSM) framework. We propose a novel scenario-
enhanced learning module to alleviate the first problem. Specifically, we incorpo-
rate scenario priors to partition the input feature set into scenario-specific and
scenario-shared features, mapped to an embedding encoding specific information
and a set of embeddings encoding shared information. After introducing adaptive
gating and orthogonality constraints on the latter to facilitate the separation of
shared information corresponding to each scene, it is combined with the former
to obtain the multifunctional representation. Since neither adaptive gating nor
orthogonality constraints require additional learnable parameters, and the sep-
arate modelling of feature sets eases the learning burden, the scenario-enhanced
learning module provides an effective and efficient way to obtain the desired
representations. Inspired by the effectiveness of feature interactions in single-
scenario modelling, we then develop a scenario-specific hypernetwork to deal
with the second problem, which generates adaptive network parameters based
on scenario-aware representations. In this way, scenario-aware representations
can fully interact with scenario-specific predictors to further improve perfor-
mance. Moreover, as shown in Sect. 4.2, our framework can also be effectively
integrated with existing multi-scenario models to improve performance.

2 Related Work

In this section, we briefly review some related works on two topics, including
single-scenario modelling and multi-scenario modelling for CTR prediction.

Single-Scenario Modeling for CTR Prediction. Traditional CTR predic-
tion aims to leverage the user interactions within a specific scenario to train
an effective model for this scenario [5,16,19,22]. Most existing works on this
topic focus on improving the modelling of feature interactions to enhance the
performance of models, and many representative methods have been proposed.
For example, DeepFM combines factorization machine and deep network layer
to model the feature interactions [8], DCN [29] and DCN-V2 [30] develop a novel
cross-network layer to further characterize the explicit feature interactions, and
APG [33] proposes an adaptive parameter generation network for deep CTR
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prediction models, which can enhance the representation of feature interactions
per instance with a larger parameter space. In addition, some recent works have
introduced various automated machine learning ideas to efficiently find a suitable
feature interaction architecture, such as AutoFIS [14] and OptInter [15]. Overall,
previous works have shown that the design of feature interaction architecture is
an important factor in improving the performance of single-domain CTR models,
which is neglected in multi-scenario modelling for CTR prediction.

Multi-Scenario Modeling for CTR Prediction. Multi-scenario CTR mod-
elling aims to leverage all the user interactions in different scenarios to train one
or more models to serve these scenarios simultaneously [7,11,13,24,25,31,37],
where the key question is how to use shared-specific information to learn the ver-
satile scenario-aware representations, and then use a scenario-specific architec-
ture for per-scenario prediction. A lot of work has been proposed to improve the
effectiveness of scenario-aware representation learning. For example, STAR [25]
designs a novel topological dependency to fully exploit the relationship between
different scenarios. SAR-Net [24] introduces a scenario-aware attention module
to extract scenario-specific user features, and a corresponding gating mecha-
nism is designed to fuse them with shared information. CausalInt [31] introduces
the priors on causal graphs to efficiently extract shared information and reduce
negative transfer. However, these methods will significantly increase the model
parameter size and training difficulty. Furthermore, ignoring the improvement
of scenario-specific predictor architectures will lead to performance bottlenecks.

3 Preliminary

In this section, we first give a formal definition of the multi-scenario CTR pre-
diction task. Given a set of scenarios S = {sm}Mm=1 and a set of training instance
{(x, y, sm)}Nn=1, where x ∈ X is the feature vector, y ∈ {0, 1} is the label, and
m ∈ {1, · · · ,M} is the scenario indicator corresponding to each instance. The
multi-scenario CTR prediction task needs to perform CTR prediction on these
M related scenarios,

ŷ = F(x, y, sm), (1)

where F is the multi-scenarios model and ŷ is the predicted label. Further, we can
decompose this task into two stages, i.e., scenario-aware representation learning
f(·) and scenario-specific prediction g(·),

Rsm = f(x, sm | W),

ŷ = g(Rsm | {Wsm}),
(2)

where W and {Wsm} are weight parameters of the two stages, respectively.
Therefore, the optimization objective for multi-scenario CTR prediction can be
formalized as,

Lmsm =
N∑

n=1

�(yn, ŷn), (3)

where � is an arbitrary loss function, such as a cross-entropy loss.
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4 The Proposed Framework

The proposed framework for optimizing multi-scenario modelling, or OptMSM
for short, is shown in Fig. 2. The OptMSM consists of three steps. First, the
input feature partition module incorporates the scenario priors to partition the
input features. Then, the scenario-enhanced learning module models the disen-
tangled representation corresponding to each scenario from the scenario-shared
features. Finally, after combining scenario-specific information and disentangled
representation, a scenario-aware representation interaction module is used to
explore the interactions within each scenario to enhance predictive performance.
We will describe each module in detail based on the training process.

Fig. 2. The architecture of our OptMSM framework.

4.1 The Input Features Partition Module

To ease the model’s learning burden for scenario-aware representations, we
propose to divide the input features into two groups and model them sepa-
rately, including scenario-specific features xm and scenario-shared features xc,
i.e. x = {xm,xc}. An example of different categories of input features is listed in
Table 1. It can be observed that some features are specific to certain scenarios,
such as scenario id, while others are shared among all scenarios, such as gen-
der. Note that previous modelling paradigms do not differentiate input feature
categories. Therefore, scenario-specific features are difficult to transfer across
scenarios during learning scenario-aware representations, and scenario informa-
tion is hard to capture in the final prediction. Hence, the intuitive motivation
for this module is to resolve these issues. In addition, the model needs more
effort to reasonably balance the modeling of two categories of features. Next, we
transform scenario-specific and scenario-shared features into corresponding low-
dimensional embeddings and feed them into the following modules for further
modeling.

em = Em(xm) & ec = E(xc), (4)
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Table 1. An example of features included in the online financial recommendation
platform used in the experiments.

Feature Category Example

User Common Features gender,age, user behaviors, etc.

Item Common Features item category, item price, etc.

Context Common Features time, market condition

User Scenario-specific Features user behaviors in scenarios

Item Scenario-specific Features item statistics, item appearance in scenarios, etc.

Context Scenario-specific Features scenario id, item position in scenarios, etc.

where Em, em, E, ec are the embedding tables and embeddings corresponding
to the two category features, respectively.

4.2 The Scenario Enhanced Learning Module

After receiving the scenario-shared feature embeddings ec generated by the pre-
vious module, we need to leverage cross-scenario information sharing and trans-
fer to learn effective scenario-aware representations for different scenarios. An
intuitive idea is that each scenario should pay extra attention to scenario-shared
features [11]. Therefore, we first introduce an adaptation gate for each scenario
to refine ec with scenario-specific information. In this paper, we take Squeeze-
and-Excitation (SE-Net) [10] as an example implementation,

zm = σ(Wm[average(ec1), ..., average(eci)] + bm),
emc = concat([zm1 ∗ ec1, ..., zmi ∗ eci]),

(5)

where zm = (zm1 , zm2 , · · · , zmi ) is the refined weight vector for scenario m, Wm

and bm are the corresponding learnable parameters, and i is the number of
scenario-shared features. Note that adaptive gates can be implemented differ-
ently, such as an attention layer [27] or a perceptual layer [24], and the SE-Net
block will be a lightweight approach for our purposes. Next, a built-in shared
information transfer module aims to utilize the information synergy among all
the scenarios to further distinguish different concerns of different scenarios on
scenario-shared information. The issues for this module focus on how to transfer
and what to transfer.

How to Transfer. A range of scenario-aware learning architectures have been
explored in previous works on multi-scenario modeling, and they are easily inte-
grated into this module. Here are some examples to illustrate the process:

– shared network: The shared network aims to extract commonality from all
the scenarios and can be expressed as follows,

rshared = MLPshared(emc ), (6)
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where MLPshared is the multilayer perception network shared by all the
scenarios. Note that multiple similar MLPshared are used in MMOE, the
parameters of MLPshared are shared without explicit output in STAR, and
the output of multiple MLPshared are used as a shared expert component in
PLE.

– scenario-specific network : The scenario-specific network aims to squeeze out
scenario-specific information from shared information, in which only scenario-
specific data are used,

rmscenario = MLPm(emc ), (7)

where MLPm is the scenario-specific network. Note that the number of
MLPm can be set according to the plugged module, e.g., 0 in MMOE, equal
to the number of scenarios in STAR, and a predefined value in PLE.

– transferring layer : In some previous works, different methods are introduced
to jointly model the above two networks. For example, STAR proposes the
FCN topology dependence, and PLE introduces the gated network. To illus-
trate the transfer process, we use FCN as an example,

rmtransfer = FCN(emc ) = (Wshared ⊗ Wm) · emc + bshared + bm, (8)

where {Wshared, bshared} and {Wm, bm} are parameters in MLPshared and
MLPm, respectively, and ⊗ denotes element-wise multiplication.

Finally, this module will generate representations for all the scenarios, denoted
as {rm | m ∈ [1,M ]}.

What to Transfer. Note that the scenario-aware representations are learned
based on the model that mixes samples from all the scenarios. As a result, neg-
ative transfer often occurs, which perturbs the scenario-aware representations
and misleads subsequent top-level predictions. A critical issue to mitigate the
negative transfer effect is disentangling the representations between different
scenarios. Inspired by the disentangled representation learning [21], we propose
an explicit orthogonality constraint on the representation obtained above as an
auxiliary loss to achieve this goal. Note that the number of samples in all the
scenarios is usually unbalanced, and it is difficult to deal with the constraints
of cross-sample representations. Therefore, we propose a strategy for enhanced
learning. More specifically, for a sample b, we generate its representations in all
the scenarios, i.e., {r1b , · · · , rmb }. Only one representation corresponding to the
real scenario will be used for prediction in subsequent layers, while the others
are used as contrastive representations to compute the orthogonality constraint.
Orthogonal constraints will make these representations perpendicular to each
other to ensure independence and successfully disentangle scenario-specific infor-
mation. Note that the idea behind this strategy is similar to contrastive loss [28].
Formally, the loss can be expressed as follows,

Lorth =
∑

i�=j
b∈B

< rib, r
j
b > , < rib, r

j
b >=

rib · rjb
‖rib‖2 · ‖rjb‖2

(9)
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where ‖ · ‖2 refers to the l2 norm, and B is the size of the mini-batch. Note that
although the loss is conducted on C2

m pairs, it can be efficiently implemented in
a vectorized manner at the mini-batch level and avoids loops.

4.3 The Scenario-Aware Representation Interaction Module

Although we get the disentangled scenario-aware representation, we still need
to augment the representation with prior scenario-specific features in Eq.(4).
On the one hand, scenario-specific information has a solid induction to the
corresponding scenario, which helps the final prediction. On the other hand,
considering complex interactions has been shown to benefit the performance of
single-scenario CTR modeling. Therefore, to give the prediction more perception
of prior information, we design a hypernetwork adaptively generating scenario-
aware parameters [2,9], which provides a full representation interaction. We give
a detailed illustration of this module as shown in Fig. 3.

Fig. 3. The scenario-aware hypernetwork for parameters generation.

To preserve the priors, we only concatenate the prior scenario-specific features
embeddings em with disentangled scenario-aware representation rm,

Rm
0 = rm ⊕ em. (10)

We then adopt a two-layer perception to generate parameters from the repre-
sentations, i.e.,

R0l = Relu(w0Rm
0 + b0),

R1l = 2 � σ(w1R0l + b1),
(11)

where σ is sigmoid function, R1l has the same shape as Rm
l , and l is is the

current layer number. Setting the coefficient to 2 in Eq.(11) is to scale the mean
of sigmoid output to 1. After parameters are generated, we interact R1l with
each layer in each scenario-specific predictor,

Rm
l = Rm

l ⊗ R1l, l ∈ {0, · · · , L − 1} (12)

where Rm
l is the latent output of layer l in the scenario m, and L − 1 is the

number of layers in each scenario. Finally, the final score for m-th scenario can
be get,

ŷm = σ(WL−1R
m
L−1 + bL−1), (13)
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where Wn−1, bn−1 is the parameters of classifier. After combining Eq.(3), (9) and
(13), We can get the final optimization objective,

L = Lmsm + λ · Lorth, (14)

where λ is a hyper-parameter controlling the orthogonality constraint.

5 Experiments

In this section, we conduct comprehensive experiments with the aim of answering
the following five key questions.

– RQ1: Could OptMSM achieve superior performance compared with main-
stream multi-scenario models?

– RQ2: Could OptMSM transfer to more multi-scenario models?
– RQ3: How does each module of OptMSM contribute to the final results?
– RQ4: Does OptMSM really get the optimal scenario-aware representation?
– RQ5: How does OptMSM perform in real-world recommendation scenarios?

5.1 Experiment Setup

Datasets. We conduct our offline experiments on three datasets, including two
publicly multi-scene CTR benchmark datasets (Ali-CCP and AliExpress) and a
private product dataset. Ali-CCP1 is collected from the traffic log of Tabao, and
we divide logs into three scenarios according to the scenario id. AliExpress2 is col-
lected from the AliExpress search system, which contains user behaviours from
five countries. We consider each country as an advertising scenario and select
four countries in our experiments following the setting of previous work [38].
The real product dataset comes from the financial business scenario of Tencent
Licaitong, and we collect consecutive 4 weeks of user feedback logs from four
scenarios, respectively. For Ali-CCP, following previous work [32], we use all the
single-valued categorical features and take 10% of the train set as the validation
set to verify models. For AliExpress, we split the training set and test set accord-
ing to the settings in the original paper [13]. For the production dataset, we keep
data on the last day as the test set, and the rest as the training and validation
sets. Table 2 summarize the statistics for these datasets. We can observe that
the data distribution in Ali-CCP and Production is obviously unbalanced.

Comparison Models. To verify the effectiveness of our proposed framework,
we compare OptMSM with the following models. Mix: The model with a 3-layer
fully-connected network is trained with a mixture of samples from all Scenarios;
S-B: We share the embedding table across scenarios, and each scenario-specific
network is the same as Mix, i.e., shared bottom model; MMoE [17]: We adopt a

1 https://tianchi.aliyun.com/dataset/408.
2 https://tianchi.aliyun.com/dataset/74690.

https://tianchi.aliyun.com/dataset/408
https://tianchi.aliyun.com/dataset/74690
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Table 2. Statistics of datasets used in offline experiments. For impression and click,
the percentages in each scenario are given in brackets.

Dataset #Scenarios #Impression #Click

Ali-CCP 3 85,316,519
(0.75/37.79/61.46)

3,317,703
(0.84/38.91/60.25)

AliExpress 4 103,814,836
(17.07/26.04/30.51/26.38)

2,215,494
(17.02/24.49/38.15/20.34)

Production 4 823,972,400
(68.96/3.93/8.05/19.06)

59,466,088
(47.38/7.21/14.09/31.32))

shared Mixture-of-Experts model, where each expert is a 3-layer fully-connected
network and the number of experts equals 2 ∗#scenarios; HMOE [13]: Except
for explicit relatedness in the label space introduced by HMOE, the other settings
are the same as MMOE; PLE [26]: The core module of PLE is CGC (Customized
Gate Control), which consists of scenario-specific experts and shared experts. We
keep the number of the former the same as MMOE with two additional shared
experts; STAR [25]: This model consists of a centered network shared by all sce-
narios and the scenario-specific network for each scenario. The architectures of
all networks are the same as Mix; and PEPNet [2]: This model adopts person-
alized prior information to enhance embedding and parameter personalization,
and only has scenario-specific towers for predictions.

Implementation Details and Evaluation Settings. All models are imple-
mented on Tensorflow [1] and trained with Adam optimizer [12]. We tune learn-
ing rate from [10−2, 10−3, 10−4, 10−5], L2 weight from [10−3, 10−4, 10−5, 10−6],
and dropout rate from [0.1, 0.2, 0.3, 0.4]. The batch sizes for each dataset are
set as 2048, 2048, and 512, respectively. The embedding dimensions are set as
20, 10, and 10. Besides, the hidden layers of the fully connected network are
fixed to [256, 128, 32]. Following the previous works [8,25], we use two common
metrics in CTR prediction, i.e., AUC (Area Under ROC) and Logloss (based on
cross-entropy).

5.2 RQ1: Overall Performance

We show the overall performance of our OptMSM and other baselines in Table 3.
We summarize our observations below: 1) OptMSM generally outperforms base-
lines in most scenarios in three datasets. Specifically, OptMSM performs consis-
tently well in three scenarios in the Ali-CCP dataset and improves significantly
in the first sparse scenario. In the other two datasets, our OptMSM performs
better in most scenarios to different degrees. Although OptMSM achieves the
second performance in some scenarios, note that the difference is within 0.1%,
which is also acceptable considering OptMSM gains statistical improvements in
other scenarios; 2) On the whole, MSM can boost performance in all scenar-
ios compared with the model trained with mixed data. However, this model
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Table 3. The overall performance over three datasets. The boldface and underline
indicate the highest score of all the models and baselines. � indicates significant level
p-value < 0.05.

Scenario Metric Mix S-B MMOE HMOE PLE STAR PepNet OptMSM

Ali-CCP S1 AUC 0.5921 0.5899 0.5955 0.5979 0.5943 0.5924 0.5941 0.6023�

Logloss 0.1838 0.1855 0.1811 0.1801 0.1811 0.1906 0.1922 0.1782�

S2 AUC 0.6166 0.6202 0.6183 0.6214 0.6198 0.6246 0.6203 0.6257�

Logloss 0.1673 0.1663 0.1657 0.1662 0.1657 0.1715 0.1724 0.1648�

S3 AUC 0.6141 0.6164 0.6151 0.6183 0.6165 0.6175 0.6168 0.6231�

Logloss 0.1641 0.1600 0.1596 0.1601 0.1596 0.1601 0.1693 0.1587�

AliExpress NL AUC 0.7256 0.7253 0.7257 0.7261 0.7256 0.7257 0.7258 0.7286�

Logloss 0.1087 0.1086 0.1081 0.1080 0.1079 0.1084 0.1078 0.1077

FR AUC 0.7247 0.7256 0.7258 0.7260 0.7263 0.7258 0.7266 0.7256

Logloss 0.1010 0.1013 0.1009 0.1007 0.1008 0.1009 0.1006 0.1004

ES AUC 0.7272 0.7276 0.7281 0.7285 0.7279 0.7277 0.7290 0.7301�

Logloss 0.1211 0.1210 0.1207 0.1207 0.1208 0.1211 0.1204 0.1201

US AUC 0.7084 0.7059 0.7082 0.7084 0.7084 0.7073 0.7088 0.7108�

Logloss 0.1015 0.1008 0.1008 0.1006 0.1006 0.1007 0.1004 0.1005

Production S1 AUC 0.8718 0.8853 0.8866 0.8811 0.8872 0.8875 0.8866 0.8890�

Logloss 0.0951 0.0914 0.0954 0.0982 0.0958 0.0862 0.0956 0.0848�

S2 AUC 0.8997 0.9065 0.9069 0.9004 0.9077 0.9069 0.9068 0.9071

Logloss 0.0246 0.0248 0.0256 0.0259 0.0258 0.0259 0.0317 0.0247

S3 AUC 0.8414 0.8478 0.8491 0.8502 0.8496 0.8515 0.8507 0.8524�

Logloss 0.0361 0.0288 0.0286 0.0286 0.0288 0.0276 0.0340 0.0273

S4 AUC 0.8665 0.8765 0.8759 0.8774 0.8768 0.8756 0.8773 0.8808�

Logloss 0.0569 0.0584 0.0581 0.0586 0.0585 0.0575 0.0654 0.0538�

performs slightly better than others in scenarios with sparse training samples.
For example, the Mix model performs better in Ali-CCP S1 and Production
S2. The possible reason for this is that samples in other scenarios are far more
than these two scenarios and can directly help prediction in these two scenarios;
and 3) PEPNet performs consistently better in AliExpress compared with other
baselines while achieving relatively poor performance in other skewed datasets.
Note that the distribution of AliExpress is more balanced than the other two
datasets. Hence, this comparison directly verifies the effectiveness of information
priors in some datasets and indirectly reflects that positive transfer is important
when spares scenarios exist.

5.3 RQ2: Transferability Analysis

In this subsection, we investigate the transferability of our framework. We intro-
duce FCN as our shared information transfer module in our framework. Here
we extend our framework to other operation modules to illustrate whether our
framework really optimizes the key factors for these modules. As shown in Fig. 4,
we extend our OptMSM with transfer operations, including FCN, MoE, and
CGC. Compared with the corresponding model, OptMSM improves its perfor-
mance in all the scenarios, further validating the effectiveness of our design opti-
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Fig. 4. Transferable analysis of OptMSM with different operation on Ali-CCP.

Table 4. Training cost comparison on the Ali-CCP.

Model Star OptMSM(FCN) MMoE OptMSM(MoE) PLE OptMSM(CGC)

Cost (s) 684 716 (+4.68%) 692 724 (+4.62%) 941 982 (+4.36%)

mizing module. To investigate whether the additional optimization will bring a
lot of computation cost, we report the training time of these models in Table 4.
Notably, the increment of training time of OptMSM is acceptable.

5.4 RQ3 and RQ4: Ablation Study

In this subsection, we validate the contribution of each component of OptMSM.
We conduct a series of ablation studies over the datasets by examining the
AUC after removing each component. The results are summarized in Table 5
and 6. The observations are summarized as follows: (1) All three components
play important roles in optimizing different architectures, proving our optimizing
framework’s effectiveness. (2) In both datasets, removing orthogonal constraints
generally suffers from the most decrement in AUC, which means the disentan-
gled representation is effective. (3)Because of the significant improvement of
PEPNet in AliExpress, removing hypernetwork in AliExpress is harmful to our
framework, which indicates that our framework optimizing scenario-specific pre-
diction module is useful. As the disentangled representation is a key factor in
our OptMSM, we further illustrate visual results by comparing the t-SNE [18]
representations with and without orthogonal constraint in Fig. 5. Note that our
constraint is effective in explicitly disentangling representation.

5.5 RQ5: Online Experiments

In this subsection, we report the online experiment results of our OptMSM
in a financial product recommender system for four consecutive weeks, and
the results further verify the effectiveness of our OptMSM. Firstly, we briefly
present the recommender system overview, shown in Fig. 6. This system has
two main components: Online Service and Offline Training respectively. When
users access any scenarios, a rank list request will be sent to the online ser-
vice. Meanwhile, the user’s attributes and contextual features will also be sent
to the ranker, which utilizes the offline model to predict the score. In offline
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Table 5. Ablation study on OptMSM with FCN for Ali-CCP. w/o means removing
the corresponding component, and the relative decrement is reported in the brackets.

Model S1 S2 S3

OptMSM 0.6023 0.6257 0.6231

w/o priors 0.6014 (−0.15%) 0.6247 (−0.16%) 0.6222 (−0.14%)

w/o constraint 0.6010 (−0.22%) 0.6246 (−0.18%) 0.6219 (−0.19%)

w/o hypernetwork 0.6016 (−0.12%) 0.6249 (−0.13) 0.6223 (−0.13%)

Table 6. Ablation study on OptMSM with CGC for AliExpress. w/o means removing
the corresponding component, and the relative decrement is reported in the brackets.

Model NL FR ES US

OptMSM 0.7290 0.7268 0.7312 0.7117

w/o priors 0.7288 (−0.03%) 0.7260 (−0.11%) 0.7302 (−0.14%) 0.7112 (−0.07%)

w/o constraint 0.7277 (−0.18%) 0.7263 (−0.07%) 0.7301 (−0.15%) 0.7108 (−0.13%)

w/o hypernetwork 0.7280 (−0.14%) 0.7265 (−0.04) 0.7302 (−0.14%) 0.7107 (−0.14%)

Fig. 5. Visualization results on the representation in AliExpress. Left: with orthogonal
constraint; Right: without orthogonal constraint.

training, the ranker leverages behaviour historical logs, and the trainer trains
the model based on the logs daily. Our OptMSM trains a unified model here
to serve multiple scenarios. We deploy the OptMSM on four scenarios in this
financial product recommender platform, which serves millions of daily active
users. And the model is trained in a single cluster, where each node contains
96-core Intel(R) Platinum 8255C CPU, 256GB RAM, and 8 NVIDIA TESLA
A100 GPU cards. Besides using Click Through Rate (CTR)(i.e. #click

#impression ), a
commonly-used online evaluation metric, we also use purchase amount per mille
(PAPM), defined as #purchase amount

#impression × 1000. Briefly, our OptMSM improve the
overall performance, achieving +1.42%, +1.76%, +1.26% and +0.84% lift
on CTR, and +6.58%,+7.10%,+5.82% and +6.90% lift on PAPM over 4
scenarios. The daily improvements are illustrated in Fig. 7.
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Fig. 6. Overview of the financial product recommender system.

Fig. 7. Online relative improvement ratios in four scenarios in consecutive four weeks.
(Upper is the CTR improvement, Bottom is the PAPM improvement).

6 Conclusion

In this paper, we propose a framework named OptMSM, which can optimize
multi-scenario modeling with disentangled representation and scenario-specific
interaction. First, we partition input features into two separate feature sets incor-
porating scenario priors, including scenario-specific and scenario-shared features.
Then we design a scenario-enhanced learning module with plugged scenario-
shared information transfer. With orthogonal constraints on both scenario-aware
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representation and contrastive representations, we obtain the disentangled repre-
sentation. Finally, the scenario-specific interaction module adopts hypernetwork
to make the scenario-specific information and scenario-aware representation fully
interact. Compelling results from both offline evaluation and online A/B exper-
iments validate the effectiveness of our framework.
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