
ALTRec: Adversarial Learning for
Autoencoder-based Tail Recommendation

Jixiong Liu, Dugang Liu, Weike Pan∗ and Zhong Ming∗
College of Computer Science and Software Engineering, Shenzhen University
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)

Shenzhen, China
liujixiong@email.szu.edu.cn, dugang.ldg@gmail.com, {panweike,mingz}@szu.edu.cn

Abstract—Autoencoder-based methods have achieved signifi-
cant performance on item recommendation. However, they may
not perform well on tail items due to the ignorance of the items’
popularity bias. As a response, in this paper, we focus on tail
items and propose a novel adversarial learning method for tail
recommendation (ALTRec). In our ALTRec, the generator (i.e.,
AutoRec) not only reconstructs the input well, but also minimizes
the (any two-user) similarity difference between the input stage
and the output stage to keep users’ interaction relationships
unchanged. And the discriminator maps the inputs and outputs
of the generator to a same semantic space for scoring the
similarity and maximizes the similarity difference as the target,
and will identify some unsatisfactory predictions, especially on
tail items. In order to preserve the similarity, the generator
will pay more attention to the tail items compared with the
previous autoencoder-based methods. An ablation study validates
the effectiveness of preserving the two-user similarity, as well
as the adversarial learning strategy in our ALTRec. Extensive
experiments on three real-world datasets show that our ALTRec
significantly boosts the performance on tail items compared with
several state-of-the-art methods.

Index Terms—Adversarial Learning, Tail Recommendation,
Collaborative Filtering, Implicit Feedback

I. INTRODUCTION

Item recommendation has been well recognized as an im-
portant solution to alleviate the information overload problem
existing in various application scenarios such as e-commerce
and news recommendation. Technically, collaborative filtering-
based recommendation methods that model the users’ tastes
solely based on the (user, item) interactions have been widely
explored and deployed. In particular, matrix factorization
based methods and autoencoder-based methods are two im-
portant families in this branch, where the latter have been
attracting more and more attention of both researchers and
practitioners because of their simplicity and powerful represen-
tation ability. For example, AutoRec [1] converts a user’s past
interaction behaviors to a vector as input, and learns the user’s
preference by minimizing the reconstruction loss between the
input vectors and the prediction ones. CDAE [2] introduces
a dropout trick to enhance the robustness, and an additional
node of a user’s representation for better personalization. And
Mult-VAE [3] assumes that the representation of a user should
conform to a Gaussian distribution, in which the encoder is
designed to learn the mean value and standard deviation, and

*: Co-corresponding authors

s1 s2 s3 s4 s5 s6 s7 s8 s9 s1
0

Item segment

0

0.1

0.2

0.3

A
v
e

ra
g

e
 p

re
fe

re
n

c
e

Fig. 1. Average predicted preference of AutoRec on decile items with different
popularity, i.e., from the most popular segment (s1) to the least popular one
(s10), of MovieLens 1M.

the decoder generates the user’s preferences on all the items
based on the corresponding multinomial likelihood.

Although autoencoder-based item recommendation methods
have achieved significant overall performance, their perfor-
mance on the tail items (i.e., the unpopular ones) are usually
not satisfactory [4]. The reason is that they may unconsciously
emphasize the fitting on the head items (i.e., the most popular
ones) while neglecting the tail ones due to the difference in
the amount of training samples. We call this phenomena the
popularity bias, and illustrate it in Figure 1 via a distribution of
the average predicted preference over the items with different
popularity in MovieLens 1M. We can see that the average
preference of a well-trained AutoRec on the head items is
much larger than that on the tail ones, which indicates that
the model tries to minimize the loss mostly defined on the
head items instead of on all the items equally.

Due to insufficient modeling of the tail items, one conjecture
is that an autoencoder-based method may struggle to maintain
the similarity between any two users in the input and predic-
tion stages. But in fact, the similarity (e.g., cosine similarity)
between the two stages is usually close, because the interaction
history of most users is often concentrated on the head items,
making it difficult for the inaccurate predicted preferences on
a small number of tail items to influence the similarity a lot.
We give an example in Figure 2, where values with red and
black correspond to the head and tail items, respectively. Due
to the dominance of the head item, user 2 and user 3 still have
high similarity in both stages, despite having an inaccurate

20
22

 IE
EE

 9
th

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

at
a

Sc
ie

nc
e

an
d

A
dv

an
ce

d
A

na
ly

tic
s (

D
SA

A
) |

 9
78

-1
-6

65
4-

73
30

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

SA
A

54
38

5.
20

22
.1

00
32

42
3

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:45:24 UTC from IEEE Xplore. Restrictions apply.

predicted preference on the tail items. However, if we pay
more attention to the tail items, it can be easily recognized
that the similarity between user 2 and user 3 is inconsistent
in the input stage and the prediction stage. To avoid being
simply revealed, the model can add confusion by adjusting
the prediction mode on the tail items.

1
0
1
...
1

0.9
0.5
0.7
...
0.1

1
0
1
...
0

0.9
0.6
0.8
...
0.1

1
0
1
...
1

0.9
0.6
0.8
...
0.1

Fig. 2. An example of the input and prediction vectors on three different
users, where values with red and black correspond to the head and tail items,
respectively.

Based on the above description, in order to improve the
impact of the predicted preferences on tail items to the
similarity, we propose an adversarial learning (AL) approach
for tail recommendation (TRec), i.e., ALTRec, by introducing
a constraint on the similarity of two users (i.e., the two-
user similarity). In particular, we map the concatenation of
two users’ input (or output) vectors of the generator to a
same semantic space via the discriminator. In this way, the
discriminator scores the similarity of the two users, which
is further designed to maximize the difference between the
the similarity w.r.t. the input stage and that w.r.t. the output
stage of the generator, in order to expand the influence of the
predicted preference on each item on the similarity. On the
contrary, in order to address the issue of the popularity bias
and improve the performance on the tail items, we minimize
the above similarity difference via the generator aiming to
treat all the items equally (instead of emphasizing on the
head items only). Notice that the similarity difference will be
large if the generator reconstructs the preferences well on the
head items only like AutoRec. For this reason, the generator
is designed to minimize the difference so as to pay more
attention to the tail items. An ablation study in the experiments
validates the effectiveness of the constraint and the proposed
adversarial learning strategy. Meanwhile, empirical studies
show the effectiveness of our ALTRec compared with several
very competitive methods.

We summarize our main contributions as follows: (i) we
point out the problem that most previous autoencoder-based
methods usually do not perform well on tail items, which can
be alleviated by keeping users’ similarity in different stages
unchanged; (ii) we introduce an adversarial learning strategy
to further enhance the similarity constraint used for recom-
mending tail items; and (iii) we conduct extensive comparative
studies between our solution (i.e., ALTRec) and several state-
of-the-art methods on three real-world datasets, and show the
effectiveness of our ALTRec on tail recommendation.

II. OUR SOLUTION

A. Problem Definition

In this paper, we use u ∈ U = {1, 2, ..., n} to index
users and i ∈ I = {1, 2, ...,m} to index items. For item
recommendation, we convert all the (user, item) interaction
entries to ‘1’ and all the missing entries to ‘0’, and thus obtain
a binary matrix X ∈ Rn×m. For each user u, we use Xu ∈ Rm

to represent the user u’s binary vector, in which ‘1’ means that
the user has interacted with the item, and ‘0’ otherwise. And
our goal is to improve the recommendation performance on
tail items.

Mask

Mask

+ +

G

G

D

D

...

...

...

...

...

...

...

...

Share parametersShare parameters

Fig. 3. Illustration of our ALTRec, where the generator (G) aims to reconstruct
the input and minimize the similarity difference (of two users) between the
input stage and the output stage, and the discriminator (D) is a neural network
that maps the inputs from two different stages to a same semantic space and
maximizes the similarity difference.

B. Overall Framework

The items’ popularity bias will inevitably cause an
autoencoder-based method such as AutoRec to emphasize
the importance of the head items in training, resulting in
insufficient training on the tail ones. Meanwhile, due to the
lack of training samples w.r.t. tail items, it is difficult for
the inaccurate predicted preferences on tail items to have a
sufficient impact on the similarity defined on any two users.
In order to address the problem, we propose an adversarial
learning strategy in our ALTRec to improve the impact of a
user’s preference on each item on the similarity. Hence, our
proposed ALTRec will pay more attention to the tail items
because of insufficient modeling on them.

We illustrate our solution in Figure 3, and formulate it as
follows,

min
θ

max
ϕ

E
u,v∈U

f(Zt, Zf), (1)

where θ and ϕ are parameters of the generator (i.e., AutoRec)
and the discriminator, respectively. Zt = D(Xu ⊕ Xv) or
Zf = D(X̂M

u ⊕ X̂M
v) is a mapped vector obtained from the

discriminator, indicating the similarity between the two vectors
fed to the concatenation operation ⊕. Xu and X̂M

u are the user

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:45:24 UTC from IEEE Xplore. Restrictions apply.

u’s binary vector of historical interactions and masked vector
of the predicted preferences X̂u, i.e., X̂M

u = X̂u · Xu. And
f(Zt, Zf) scores the similarity difference between u and v in
two stages, i.e., the input stage and the output stage of the
generator.

We can see that the generator G and the discriminator
D play a min-max game, in which the generator aims to
minimize the similarity difference in order to maintain users’
interaction relationships, which helps the generator pay more
attention to the tail items ignored by previous autoencoder-
based methods in the optimization process. As an adversary,
the discriminator maps inputs from different sources to a same
semantic space to represent the similarity. Meanwhile, the
discriminator aims to maximize the similarity difference, in
order to maximize the impact of the predicted preference on
each item in the generated vector on the similarity difference.
Due to insufficient modeling on the tail items, the tail items
will actually become the focused target of the adversarial
optimization.

C. The Generator

As the basis of autoencoder-based methods, AutoRec takes
the binary vector of a user’s historical interactions as input,
learns the user’s representation through the encoder, and then
predicts the user’s preferences on all the items through the
decoder. During training, it seems that the importance of the
training samples on head items and tail items is the same,
but in fact AutoRec always pays more attention to the most
samples from the head items rather than from the tail items,
which makes the performance on tail items poor.

In order to address this issue, we consider that the similarity
between any two users should be maintained at different
stages of the generator, so as to encourage the model to treat
the training samples on the head and tail items with equal
importance. Meanwhile, to further expand the influence of
the predicted preference on each item on the similarity, we
introduce an adversarial learning strategy so that the model
will pay more attention to modeling the tail items well.
Specifically, we formulate our method as follows,

θ∗ = argmin
θ

− E
u∈U

[Xu log(X̂u) + (1−Xu) log(1− X̂u)]

+ λgR(θ) + αEu,v∈Uf(Zt, Zf), (2)

where the first term and second term are the reconstruction
loss and regularization term, respectively, inheriting from
AutoRec. And we introduce a hyper-parameter λg to con-
trol the importance of the regularization. Meanwhile, another
hyper-parameter α is used to control the importance of the
adversarial loss, i.e., the last term, which measures the sim-
ilarity difference between two users. In order to reduce the
complexity to meet the challenge of the large number of users,
we select the most active users denoted as Ua, and then repeat
this to obtain |U| active users Ub. After that, we sample a user

u from Ub and another user v from U = {1, 2, ..., n}, and
reformulate the last term as follows,

Eu,v∈Uf(Zt, Zf)

≈ 1

n

∑
u∈Ub,v∈U

f(D(Xu ⊕Xv), D(X̂M
u ⊕ X̂M

v))

=
1

n

∑
u∈Ub,v∈U

(D(Xu ⊕Xv)−D(X̂M
u ⊕ X̂M

v))2, (3)

where we take the concatenation vector Xu ⊕Xv (or X̂M
u ⊕

X̂M
v) as the discriminator’s input, and then obtain a mapped

vector Zt (or Zf), representing the similarity of user u and
user v. Meanwhile, we only consider the predicted preferences
on ground truth items, i.e., X̂M

u = X̂u·Xu and X̂M
v = X̂v ·Xv ,

in order to eliminate the impact from the others. And we use
a variant of Euclidean distance to measure the similarity in
our experiment. Obviously, sampling u from fixed Ub and v
from U will pay more attention to the training samples on Ub,
which introduces user bias leading to unbalanced training. To
avoid it, we use a stop gradient strategy1 that stops gradient
from adversarial loss on u ∈ Ub from being back-propagated
to the generator so as to treat all the users fairly.

D. The Discriminator

Different from other adversarial learning based recommen-
dation algorithms [5]–[11] whose discriminator classifies the
inputs of different sources into different labels, the discrimi-
nator in our ALTRec maps the inputs from different sources
to a same semantic space so as to score the similarity [12].
Notice that the generator’s collaborator in [12] maps the inputs
to a same semantic space but the discriminator still assigns
different labels. However, our discriminator takes the vectors
of two users in the input stage or the output stage of the
generator as input, and uses the learned mapping vector to
represent the similarity of the two users at the corresponding
stage. And the goal of the discriminator is to maximize the
similarity difference between these two stages, in order to help
the generator identify which item is not sufficiently modeled.
To achieve this, we formulate the objective of the discriminator
as follows,

ϕ∗

= argmin
ϕ

− E
u,v∈U

f(Zt, Zf)

+λd E
X̃∈PX̃

[(∥∇X̃D(X̃)∥2 − 1)2]︸ ︷︷ ︸
Gradient penalty

≈ argmin
ϕ

− 1

n

∑
u∈Ub,v∈U

(D(Xu ⊕Xv)−D(X̂M
u ⊕ X̂M

v))2

+λdEX̃∈PX̃
[(∥∇X̃D(X̃)∥2 − 1)2], (4)

where the first term is to maximize the similarity difference
between the two stages. And the second term is to enforce the
Lipschitz constraint borrowed from WGAN-GP [13], which

1https://www.tensorflow.org/api docs/python/tf/stop gradient

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:45:24 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 The algorithm of ALTRec.
Input: Implicit feedback matrix X ∈ {0, 1}n×m.
Initialize: Parameters of the generator and discrimina-

tor.
1: repeat
2: for d-steps do
3: All users set U in reverse active order.
4: Select the most active users Ua and shuffle them.
5: Repeat Ua to obtain Ub until |Ub| = |U|
6: for u ∈ Ub, v ∈ U do
7: Obtain true preference vectors Xu and Xv .
8: Obtain predicted preference X̂M

u and X̂M
v .

9: Sample ϵ ∈ U(0, 1).
10: Obtain X̃ = ϵ(Xu ⊕Xv) + (1− ϵ)(X̂M

u ⊕ X̂M
v).

11: Optimize ϕ by minimizing Eq.(4).
12: end for
13: end for
14: for g-steps do
15: All users set U in reverse active order.
16: Shuffle Ua.
17: Repeat Ua to obtain Ub until |Ub| = |U|
18: for u ∈ Ub, v ∈ U do
19: Obtain true preference vectors Xu and Xv .
20: Obtain X̂u, X̂v , X̂M

u and X̂M
v .

21: Optimize θ by minimizing Eq.(2).
22: end for
23: end for
24: until convergence

adds the constraint with a penalty on the gradient norm to
generate more stable gradients. Specifically, we first randomly
generate a number ϵ from a uniform distribution U(0, 1), and
then add a penalty on the gradient of the mapping vector
D(X̃) w.r.t. X̃ = ϵ(Xu ⊕Xv) + (1− ϵ)(X̂M

u ⊕ X̂M
v). In the

experiments, we use a neural network with only one hidden
layer with 200 nodes as our discriminator, and use the sigmoid
activation function. We take the output of the hidden layer as
the mapping vector, i.e., D(Xu⊕Xv) = σ(W (Xu⊕Xv)+b).

E. Discussions

We depict the whole algorithm in Algorithm 1. Similar to
other adversarial learning algorithms, we alternatively update
the parameters of the discriminator and the generator using the
Adam optimizer. As far as we know, we are the first to adopt
the adversarial learning strategy to maintain the similarity
between two users at two different stages of the generator
in order to improve the autoencoder-based recommendation
performance on tail items.

In the discriminator step, we randomly pick up a user u
from Ub and a user v from U to construct a pair (u, v), and
then obtain two mapping vectors D(Xu ⊕Xv) and D(X̂M

u ⊕
X̂M

v). Finally, we optimize the discriminator by maximizing
the similarity difference. In this way, the discriminator will try
to identify the items that are not well modeled (resulting in
a large similarity difference), which thus guides the generator

to pay more attention to them in the next round. In fact, the
generator (i.e., AutoRec) always pays more attention to the
learning on head items rather than on the tail ones. Therefore,
the discriminator is mainly to guide the generator to pay more
attention to the learning on the tail items in the next round.
In the generator step, the generator needs to truly treat all the
items equally instead of emphasizing more on the head items,
in order to minimize the similarity difference. To reach it, the
generator will pay more attention to the tail items that are not
well modeled compared with the head items. In this way, the
generator can better capture a user’s preferences on the tail
items.

III. EXPERIMENTS

In this section, we conduct experiments on three real-
world datasets, aiming to study the following three research
questions.

• RQ1: Does our ALTRec outperform the state-of-the-
art recommendation methods for recommendation of tail
items?

• RQ2: How does our ALTRec perform on users with
different levels of activity?

• RQ3: What is the impact of the key hyper-parameters on
our ALTRec?

A. Datasets

We conduct empirical studies on three public datasets,
including MovieLens2 100K (ML100K), MovieLens 1M
(ML1M) and Anime3. Specifically, we convert all the ratings
that are larger than or equal to ‘1’ to ‘1’ and the others to ‘0’ so
as to obtain a binary matrix for item recommendation [8], [14].
We put the statistics of each dataset in Table I. Meanwhile,
for each dataset, we randomly split it into three parts, i.e.,
60% for training, 20% for validation and the remaining 20%
for test. We take the top 10% and 20% most popular items
as head items and the rest as the tail ones [9], [15]. In the
validation data, we further obtain a tail data by removing the
top 10% most popular items, which is used for parameter
tuning. Similarly, in the test data, we obtain two tail data
by removing the top 10% and 20% most popular items,
respectively.

TABLE I
STATISTICS OF THE DATASETS USED IN THE EXPERIMENTS.

Dataset User # Item # Interaction # Sparsity
MovieLens 100K 943 1,605 99,894 93.40%
MovieLens 1M 6,040 3,648 1,000,117 95.46%
Anime 69,600 9,475 6,336,619 99.04%

2https://grouplens.org/datasets/movielens/
3https://www.kaggle.com/CooperUnion/anime-recommendations-database

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:45:24 UTC from IEEE Xplore. Restrictions apply.

B. Evaluation Metrics

We use four ranking-oriented evaluation metrics, including
precision (P@K), recall (R@K), normalized discounted cu-
mulative gain (N@K), and mean reciprocal rank (M@K),
where K ∈ {5, 20}.

C. Baselines

In order to study the effectiveness of our ALTRec on tail
items, we compare it with two factorization-based methods,
two autoencoder-based methods, and two adversarial learning
methods.

• Bayesian personalized ranking with matrix factoriza-
tion (BPR-MF) [16] is a well-known factorization-based
method based on pairwise preference assumption, i.e., a
user prefers an interacted item to an un-interacted one.

• Factored item similarity model (FISM) [17] learns the
similarity between two items via the inner product of
their latent representations, which are then aggregated for
predicting the preference of a user to an item.

• AutoRec [1] is an autoencoder-based method, in which
the encoder takes the binary vector of a user’s historical
interactions as input to learn the latent representation
of the user, and then the decoder predicts the user’s
preferences to all the items.

• Variational autoencoders for collaborative filtering (Mult-
VAE) [3] assumes that a user’s latent representation
should obey a Gaussian distribution, and thus the encoder
learns the mean value and standard deviation of the
distribution, and the decoder predicts the preferences
based on multinomial likelihood.

• CFGAN [8] is a vector-wise training method, in which
the generator uses an autoencoder to generate the user’s
preference vector on all the items, while the discriminator
assigns different labels to the user’s binary input of
his/her historical interactions and the generated vector.

• LongTailGAN [9] first divides the items into head and
tail items, and then calculates the associations between
any two items by the number of users who have inter-
acted with them. The generator aims to reproduce the
associations by selecting some un-interacted tail items
with higher associations to the interacted tail ones as
candidates, while the discriminator aims to correctly
classify the selected un-interacted items and the truly
interacted ones. We can see that the loss of the adversarial
part only comes from the selected items, and thus the
remaining un-interacted tail items will not be updated.

D. Implementation Details

For parameter configuration, we use the performance of
N@5 on the tail validation data. Meanwhile, we adopt an
early-stop strategy with a predefined threshold 50 for the
number of iterations.

For factorization-based methods, we adopt the SGD op-
timizer and tune the regularization coefficient and learning
rate from {1e-4, 1e-3, 1e-2, 1e-1}, and the dimension of
latent feature vectors from {50, 150, 250, 350}, independently.

For the other methods, we mainly follow the guidance of
the original papers. Specifically, we use the Adam optimizer
with a learning rate 1e-4 for LongTailGAN and 1e-3 for the
other methods. And we fix the hidden layer with 350 nodes
for AutoRec, Mult-VAE and the generators of the adversarial
learning methods. In order to avoid overfitting, we select the
regularization coefficient from {1e-4, 1e-3, 1e-2, 1e-1} for
AutoRec and Mult-VAE. For the adversarial learning methods,
we fix g steps and d steps as 10 for LongTailGAN to keep
the original setting, and 5 for the other methods. For CFGAN,
we use the ZP strategy and tune the sample ratio of ZR
from {10%, 30%, 50%}, the sample ratio of PM from {50%,
70%, 90%}, the coefficient of zero-reconstruction loss from
{1e-2, 1e-1, 1}, and the regularization coefficient for the
generator and the discriminator from {1e-4, 1e-3, 1e-2, 1e-
1} independently. For LongTailGAN, we select the dropout
rate for the discriminator and the generator from {0.1, 0.2,
0.3, 0.4, 0.5} independently, the coefficient of the adversarial
term in the generator from {1e-2, 1e-1, 1, 10, 50, 100}. For
our ALTRec, we tune the coefficient of the gradient penalty
λd from {1e-1, 1, 1e1, 1e2}, the regularization coefficient λg

in the generator from {1e-4, 1e-3, 1e-2, 1e-1}, the coefficient
of the adversarial term α in the generator from {1e-2, 1e-1,
1, 10, 50, 100}, and |Ua| from {100, 300, 500}.

Note that the source codes are available at https://github.
com/LiuJiXiong/ALTRec.

E. Performance Comparison (RQ1)

We report the main results of our ALTRec and other meth-
ods in Table II. Firstly, we can see that our ALTRec achieves
the best performance compared with other methods in all
cases. In particular, we choose AutoRec as the generator in our
ALTRec, and find that our ALTRec performs much better than
AutoRec, which indicates that the constraint of maintaining the
similarity of two users through an adversarial mechanism can
indeed effectively improve the recommendation performance
on tail items. Secondly, Mult-VAE performs much better than
most methods on ML1M and Anime except our ALTRec,
which indicates that it is helpful to improve the performance
on tail items by further restricting the user representation
distribution to a Gaussian distribution. Because Mult-VAE per-
forms relatively poorly on the small data, the performance of
Mult-VAE does not exceed AutoRec on ML100K. Even if the
sparsity of the data increases, FISM shows a relatively stable
performance, while the performance of BPR-MF becomes very
poor, which indicates that BPR-MF is easier to be influenced
by the sparsity of the dataset. For the adversarial learning
methods, LongTailGAN can not beat AutoRec on all the
datasets and performs poorly on ML100K, because it mainly
focuses the coverage of the tail items rather than on accuracy.
Meanwhile, the adversarial loss term in LongTailGAN only
focuses on a small part of the tail items, which is highly
associated with the interacted tail items measured by the
number of users who interact with them [9]. This will result
in lack of attention on most of the remaining tail items. As for
CFGAN, it mainly relies on the adversarial loss to optimize the

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:45:24 UTC from IEEE Xplore. Restrictions apply.

TABLE II
RECOMMENDATION PERFORMANCE ON TAIL ITEMS (BY REMOVING THE TOP 10% AND 20% MOST POPULAR ITEMS) IN THE TEST DATA OF MOVIELENS

100K (ML100K), MOVIELENS 1M (ML1M) AND ANIME. THE BEST RESULTS ARE MARKED IN BOLD. NOTICE THAT IMP.(%) DENOTES THE
IMPROVEMENT OF OUR ALTREC COMPARED WITH THE SECOND BEST METHOD.

Dataset Tail items Method P@5 P@20 R@5 R@20 N@5 N@20 M@5 M@20

ML100K

BPR-MF 0.0456 0.0478 0.0226 0.1098 0.0478 0.0759 0.0929 0.1253
FISM 0.0584 0.0520 0.0262 0.1038 0.0633 0.0811 0.1202 0.1474

w/o CFGAN 0.0375 0.0365 0.0137 0.0515 0.0394 0.0478 0.0798 0.1013
top LongTailGAN 0.0106 0.0117 0.0032 0.0162 0.0109 0.0146 0.0233 0.0352

10% AutoRec 0.0692 0.0594 0.0513 0.1474 0.0781 0.1089 0.1412 0.1734
Mult-VAE 0.0649 0.0564 0.0384 0.1295 0.0692 0.0952 0.1281 0.1567
ALTRec 0.1104 0.0837 0.0561 0.1649 0.1208 0.1386 0.2210 0.2477
Imp.(%) 59.54% 40.91% 9.36% 11.87% 54.67% 27.27% 56.52% 42.85%
BPR-MF 0.0160 0.0198 0.0100 0.0493 0.0175 0.0319 0.0342 0.0529

FISM 0.0163 0.0187 0.0099 0.0508 0.0169 0.0306 0.0317 0.0475
w/o CFGAN 0.0077 0.0057 0.0055 0.0121 0.0090 0.0103 0.0175 0.0242
top LongTailGAN 0.0072 0.0060 0.0023 0.0101 0.0076 0.0085 0.0175 0.0231

20% AutoRec 0.0261 0.0268 0.0317 0.1028 0.0322 0.0584 0.0503 0.0729
Mult-VAE 0.0235 0.0248 0.0219 0.0858 0.0274 0.0493 0.0478 0.0685
ALTRec 0.0594 0.0469 0.0384 0.1217 0.0671 0.0854 0.1299 0.1534
Imp.(%) 127.59% 75.00% 21.14% 18.39% 108.39% 46.23% 158.25% 110.43%

ML1M

BPR-MF 0.0673 0.0540 0.0266 0.0818 0.0720 0.0804 0.1429 0.1685
FISM 0.0609 0.0574 0.0247 0.0910 0.0636 0.0821 0.1192 0.1466

w/o CFGAN 0.0191 0.0134 0.0065 0.0149 0.0214 0.0190 0.0482 0.0575
top LongTailGAN 0.0651 0.0568 0.0282 0.0936 0.0694 0.0851 0.1332 0.1598

10% AutoRec 0.0779 0.0627 0.0411 0.1170 0.0858 0.1034 0.1654 0.1960
Mult-VAE 0.0957 0.0758 0.0452 0.1289 0.1038 0.1195 0.1931 0.2218
ALTRec 0.1362 0.1036 0.0621 0.1720 0.1478 0.1635 0.2649 0.2934
Imp.(%) 42.32% 36.68% 37.39% 33.44% 42.39% 36.82% 37.18% 32.28%
BPR-MF 0.0343 0.0260 0.0188 0.0521 0.0389 0.0450 0.0794 0.0960

FISM 0.0198 0.0220 0.0104 0.0456 0.0210 0.0333 0.0379 0.0533
w/o CFGAN 0.0008 0.0042 0.0001 0.0060 0.0005 0.0045 0.0009 0.0077
top LongTailGAN 0.0274 0.0256 0.0169 0.0590 0.0308 0.0432 0.0586 0.0762

20% AutoRec 0.0319 0.0285 0.0253 0.0810 0.0362 0.0547 0.0664 0.0880
Mult-VAE 0.0422 0.0364 0.0293 0.0879 0.0483 0.0657 0.0889 0.1107
ALTRec 0.0697 0.0564 0.0410 0.1252 0.0772 0.0976 0.1415 0.1678
Imp.(%) 65.17% 54.95% 39.93% 42.43% 59.83% 48.55% 59.17% 51.58%

Anime

BPR-MF 0.0310 0.0248 0.0273 0.0822 0.0374 0.0534 0.0670 0.0841
FISM 0.0521 0.0351 0.0544 0.1130 0.0710 0.0853 0.1162 0.1325

w/o CFGAN 0.0024 0.0009 0.0019 0.0023 0.0039 0.0029 0.0090 0.0094
top LongTailGAN 0.0443 0.0318 0.0419 0.0986 0.0562 0.0706 0.0912 0.1074

10% AutoRec 0.0518 0.0364 0.0721 0.1594 0.0753 0.1033 0.1158 0.1385
Mult-VAE 0.0686 0.0423 0.0769 0.1510 0.0964 0.1134 0.1574 0.1759
ALTRec 0.0901 0.0590 0.0923 0.2052 0.1188 0.1462 0.1920 0.2160
Imp.(%) 31.34% 39.48% 20.03% 35.89% 23.24% 28.92% 21.98% 22.80%
BPR-MF 0.0078 0.0078 0.0093 0.0370 0.0097 0.0190 0.0160 0.0236

FISM 0.0177 0.0131 0.0253 0.0590 0.0261 0.0365 0.0387 0.0473
w/o CFGAN 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003
top LongTailGAN 0.0138 0.0115 0.0168 0.0468 0.0179 0.0275 0.0273 0.0357

20% AutoRec 0.0129 0.0113 0.0251 0.0722 0.0208 0.0368 0.0281 0.0386
Mult-VAE 0.0231 0.0162 0.0367 0.0851 0.0361 0.0514 0.0535 0.0651
ALTRec 0.0389 0.0283 0.0555 0.1420 0.0550 0.0819 0.0818 0.1000
Imp.(%) 68.40% 74.69% 51.23% 66.86% 52.35% 59.34% 52.90% 53.61%

model, and does not introduce a reconstruction loss like other
adversarial learning methods, which increases the difficulty
of optimization. In addition, like other collaborative filtering
models, CFGAN will unconsciously pay more attention to
the head items and ignore the tail items, resulting in poor
performance on tail items as expected.

In order to verify the effectiveness of the adversarial strategy
in improving the recommendation performance on tail items,
we conduct an ablation study. Specifically, we implement a
model called SimilarityAE, which consists of two parts, a
generator and a similarity measurement component S. And

P@
5

P@
20

R
@

5

R
@

20

N
@

5

N
@

20

M
@

5

M
@

20
0

0.05

0.1

0.15

0.2
AutoRec

SimilarityAE

ALTRec

(a) ML100K
P@

5

P@
20

R
@

5

R
@

20

N
@

5

N
@

20

M
@

5

M
@

20
0

0.1

0.2

AutoRec

SimilarityAE

ALTRec

(b) ML1M
P@

5

P@
20

R
@

5

R
@

20

N
@

5

N
@

20

M
@

5

M
@

20
0

0.05

0.1

0.15

0.2 AutoRec

SimilarityAE

ALTRec

(c) Anime

Fig. 4. Recommendation performance of AutoRec, SimilarityAE and our
ALTRec on tail items (by removing the top 10% most popular items in the
test data) for ablation study. Notice that the performance of SimilarityAE
is represented by the stack of blue and green, and the performance of our
ALTRec is represented by the whole stack of blue, green and yellow.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:45:24 UTC from IEEE Xplore. Restrictions apply.

the goal of S is to map the inputs from different sources
to the same semantic space like the discriminator (D) in our
ALTRec, but it aims to minimize the similarity difference as
a collaborator of the generator. In other words, SimilarityAE
has the same structure as our ALTRec, but we replace the
discriminator in ALTRec with S. Notice that the goal of
S is to minimize the similarity difference and update itself
simultaneously with the generator. Therefore, we can verify
how effective the difference between them (whether to use the
adversarial strategy) is in improving the performance of the tail
item recommendation. From the results in Figure 4, we can see
that SimilarityAE performs a bit better than AutoRec, which
shows that the constraint of maintaining the similarity between
two users is helpful on the performance of the tail items.
Meanwhile, our ALTRec performs better than SimilarityAE by
a large margin, which shows the effectiveness of our proposed
adversarial learning strategy.

F. Users with Different Levels of Activity (RQ2)

[0,25
]
[25,5

0]
[50,7

5]
[75,1

00]
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

N@
5

AutoRec
SimilarityAE
ALTRec

(a) ML100K
[0,25

]
[25,5

0]
[50,7

5]
[75,1

00]
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

N@
5

AutoRec
SimilarityAE
ALTRec

(b) ML1M
[0,25

]
[25,5

0]
[50,7

5]
[75,1

00]
0.00
0.05
0.10
0.15
0.20
0.25

N@
5

AutoRec
SimilarityAE
ALTRec

(c) Anime

Fig. 5. Recommendation performance of AutoRec, SimilarityAE and our
ALTRec on users with different activity levels on tail items (by removing the
10% most popular items in the test data). We divide users into four segments
w.r.t. their activity in the training data, i.e., from the most inactive segment
[0%, 25%] to the most active one [75%, 100%].

From the main results in Table II, we find that our AL-
TRec performs better than the state-of-the-art methods. In
this subsection, we study the performance improvement of
our ALTRec compared with AutoRec and SimilarityAE on
users with different levels of activity. Specifically, we divide
users into four segments according to their activity in the
training data, including [0%, 25%], [25%, 50%], [50%, 75%]
and [75%, 100%] from the least active to the most active.
We report the results in Figure 5. On all the datasets, our
ALTRec improves the performance more with the increase
of the activity of the user segment, because users in an
active segment have more training samples to express their
preferences, which makes the preference prediction on the
tail items more accurate. Compared with the performance
improvement of the most inactive segment on ML1M, our
ALTRec and SimilarityAE have no improvement on Anime,
because each user interacts with at least 20 items on ML1M
but only 1 item on Anime, which makes it very difficult
to improve the performance by constraining the similarity
between users in the segment. We can also find that the
performance of SimilarityAE and our ALTRec decrease on the
most inactive segment on ML100K, which may be caused by
these users being more likely to interact with the head items.

G. Impact of Key Hyper-Parameters (RQ3)

In order to adjust the importance of the adversarial loss
term in Eq.(2), we introduce a coefficient α. Meanwhile, for
efficiency, we select u from the set of the most active users
Ua, and then randomly sample another user v from U so as to
construct a (user, user) pair. In particular, in this subsection,
we study the impact of these two key hyper-parameters, i.e.,
α and |Ua|, on the performance, which are shown in Figure 6
and Figure 7, respectively.

From Figure 6, we can see that the performance on the tail
items gradually improves and achieves the best when α equals
to 50 on ML1M, and the performance achieves the best when
α equals to 100 on the other two datasets. As Figure 7 shows,
the model performance varies greatly with the changes of |Ua|
on different datasets. We can see that the performance differs
less with different values of |Ua| on ML100K and ML1M,
while it is very different on Anime. The average number of
items interacted by the users in Anime is smaller than that
in the other two datasets, which makes it not conducive to
improve the performance if more users are fixed as Ua but the
interaction data of these added users is essentially sparse.

20 40 60 80 10
0

0.02

0.04

0.06

0.08

0.1

0.12

R@5

N@5

(a) ML100K

20 40 60 80 10
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14

R@5

N@5

(b) ML1M

20 40 60 80 10
0

0.08

0.09

0.1

0.11

R@5

N@5

(c) Anime

Fig. 6. Recommendation performance of our ALTRec with different values
of α ∈ {0.01, 0.1, 1, 10, 50, 100}.

10
0

20
0

30
0

40
0

50
0

0.06

0.08

0.1

0.12

R@5

N@5

(a) ML100K
10

0
20

0
30

0
40

0
50

0

0.06

0.08

0.1

0.12

0.14

R@5

N@5

(b) ML1M
10

0
20

0
30

0
40

0
50

0

0.07

0.08

0.09

0.1

0.11

R@5

N@5

(c) Anime

Fig. 7. Recommendation performance of our ALTRec with different values
of |Ua| ∈ {100, 300, 500}.

IV. RELATED WORK

For item recommendation, factorization-based methods have
shown very competitive performance. For example, BPR-
MF [16] assumes that a user prefers an interacted item to
an un-interacted one, and FISM [17] learns the similarity
between any two items and represents a user by the aggregated
representation of the past interacted items of the user. Besides
the factorization-based methods, autoencoder-based methods
have also been very popular due to its representation power.
AutoRec [1] takes a binary vector for a user’s historical
interactions as input and infers the user’s representation by the
encoder, and then generates the preferences on all the items
via the decoder. For improved robustness and personalization,
CDAE [2] corrupts its input and introduces an embedding

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:45:24 UTC from IEEE Xplore. Restrictions apply.

matrix for the users. Mult-VAE [3] introduces a distribu-
tion for the hidden representation, which is known to be
more effective in reconstruction and prediction. Due to the
strong generalization ability of GAN [18], [19], adversarial
learning based methods have been received much attention
from the community of recommender systems [20]–[24]. The
discriminator in IRGAN [5] and APL [6] assigns a different
reward for each generated item, while the generator selects
the high-quality items from the candidate pool aiming to
obtain more reward. CFGAN [8] adopts an autoencoder as
the generator to generate preferences on all the items, and
the discriminator assigns different labels for different sources.
VAEGAN [11] introduces adversarial variational Bayes (AVB)
to relax the constraint of the inferred representation in Mult-
VAE, an auxiliary discriminator to reduce the reconstruction
loss, and a contractive loss to enhance the robustness. To
alleviate the vulnerability of the models when encountering
adversarial samples [25], APR [26] and ACAE [27] aim to
maintain the model’s robustness by defending the challenge
from the adversarial perturbations.

Although many methods perform well for item recommen-
dation, few of them are designed to improve the performance
on tail items [28], [29]. Among the methods for tail recom-
mendation, [30] decomposes the (user, item) interaction matrix
into two parts, one for head items and the other for tail ones,
and then models them separately. Meanwhile, it integrates
the users’ side information. [15] clusters the tail items via
the similarity of items’ content vectors, and then the model
replaces the tail items in the original sequence with cluster
labels, and constructs a pseudo ground truth sequence to train
the model. [9] first divides the items into head and tail ones,
and then calculates the associations between any two items
by the number of users who have interacted with them. And
the generator aims to reproduce the associations by selecting
some un-interacted tail items with higher associations to the
interacted tail ones as the potential interactions. However, the
above two methods mainly focus on improving the diversity
of the recommendation results instead of the recommendation
accuracy. There are also some algorithms that address the long-
tail phenomenon by data imputation. For example, [31] is
devised to augment the explicit ratings and [4] is proposed to
generate virtual and plausible neighbors for users and items
to address the cold-start problems.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we focus on recommendation of tail items
(or tail recommendation, TRec) and propose a novel adver-
sarial learning (AL) method called ALTRec. In particular, we
introduce a constraint to retain the two-user similarity at the
input stage and the output stage of the generator. Moreover,
we map the inputs and outputs of the generator to a same
semantic space via the discriminator so as to represent the two-
user similarity and maximize the similarity difference, which
will in turn guide the generator to treat all the items equally.
Importantly, the generator will then model the tail items well
(instead of largely focusing on the head items only in previous

autoencoder-based methods) in order to minimize the two-
user similarity difference. To validate the effectiveness of the
proposed constraint and the adversarial learning strategy, we
compare our ALTRec with SimilarityAE and AutoRec [1], and
find that SimilarityAE performs better than AutoRec indicating
the usefulness of the proposed constraint, and our ALTRec fur-
ther outperforms SimilarityAE by a large margin showcasing
the merit of the adversarial learning strategy. Meanwhile, we
find that our ALTRec performs significantly better than other
state-of-the-art methods for tail item recommendation.

In the future, we are interested in studying different user
pairing approaches, as well as other advanced backbone
models such as Mult-VAE [3]. Moreover, we plan to study
privacy protection mechanisms in designing federated tail
recommendation methods with users’ implicit feedback [32].

ACKNOWLEDGMENT

We thank the support of National Natural Science Founda-
tion of China Nos. 62172283 and 61836005.

REFERENCES

[1] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “AutoRec: Au-
toencoders meet collaborative filtering,” in Proceedings of the 24th
International Conference on World Wide Web Companion, 2015, pp.
111–112.

[2] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising
auto-encoders for top-N recommender systems,” in Proceedings of the
9th ACM International Conference on Web Search and Data Mining,
2016, pp. 153–162.

[3] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Variational
autoencoders for collaborative filtering,” in Proceedings of the 2018
World Wide Web Conference, 2018, pp. 689–698.

[4] D. Chae, J. Kim, D. H. Chau, and S. Kim, “AR-CF: Augmenting
virtual users and items in collaborative filtering for addressing cold-
start problems,” in Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2020, pp. 1251–1260.

[5] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and
D. Zhang, “IRGAN: A minimax game for unifying generative and
discriminative information retrieval models,” in Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2017, pp. 515–524.

[6] Z. Sun, B. Wu, Y. Wu, and Y. Ye, “APL: Adversarial pairwise learning
for recommender systems,” Expert Syst. Appl., vol. 118, pp. 573–584,
2019.

[7] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and
M. Guo, “GraphGAN: Graph representation learning with generative
adversarial nets,” in Proceedings of the 32nd AAAI Conference on
Artificial Intelligence, 2018, pp. 2508–2515.

[8] D. Chae, J. Kang, S. Kim, and J. Lee, “CFGAN: A generic collabora-
tive filtering framework based on generative adversarial networks,” in
Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, 2018, pp. 137–146.

[9] A. Krishnan, A. Sharma, A. Sankar, and H. Sundaram, “An adversarial
approach to improve long-tail performance in neural collaborative fil-
tering,” in Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, 2018, pp. 1491–1494.

[10] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative
adversarial nets with policy gradient,” in Proceedings of the 31st AAAI
Conference on Artificial Intelligence, 2017, pp. 2852–2858.

[11] X. Yu, X. Zhang, Y. Cao, and M. Xia, “VAEGAN: A collaborative
filtering framework based on adversarial variational autoencoders,” in
Proceedings of the 28th International Joint Conference on Artificial
Intelligence, 2019, pp. 4206–4212.

[12] M. Amodio and S. Krishnaswamy, “TraVeLGAN: Image-to-image trans-
lation by transformation vector learning,” in Proceedings of the 2019
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 8983–8992.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:45:24 UTC from IEEE Xplore. Restrictions apply.

[13] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of Wasserstein GANs,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems,
2017, pp. 5767–5777.

[14] M. Volkovs and G. W. Yu, “Effective latent models for binary feedback
in recommender systems,” in Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Re-
trieval, Santiago, Chile, August 9-13, 2015, R. Baeza-Yates, M. Lalmas,
A. Moffat, and B. A. Ribeiro-Neto, Eds., 2015, pp. 313–322.

[15] Y. Kim, K. Kim, C. Park, and H. Yu, “Sequential and diverse recom-
mendation with long tail,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence, 2019, pp. 2740–2746.

[16] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “BPR:
Bayesian personalized ranking from implicit feedback,” in Proceedings
of the 25th Conference on Uncertainty in Artificial Intelligence, 2009,
pp. 452–461.

[17] S. Kabbur, X. Ning, and G. Karypis, “FISM: Factored item similarity
models for top-N recommender systems,” in Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2013, pp. 659–667.

[18] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial
nets,” in Proceedings of the 25th International Conference on Neural
Information Processing Systems, 2014, pp. 2672–2680.

[19] A. Jabbar, X. Li, and B. Omar, “A survey on generative adversarial
networks: Variants, applications, and training,” ACM Computing Surveys,
vol. 54, no. 8, pp. 1–49, 2022.

[20] Y. Lin, Z. Xie, B. Xu, K. Xu, and H. Lin, “Info-flow enhanced GANs
for recommender,” in Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval,
2021, pp. 1703–1707.

[21] Y. Zhou, J. Xu, J. Wu, Z. T. Nasrabadi, E. Körpeoglu, K. Achan,
and J. He, “PURE: Positive-unlabeled recommendation with generative
adversarial network,” in Proceedings of the 27th ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining, 2021, pp. 2409–2419.

[22] C. Zhang, J. Li, J. Wu, D. Liu, J. Chang, and R. Gao, “Deep recom-
mendation with adversarial training,” IEEE Transactions on Emerging
Topics in Computing, 2022.

[23] C. Li, M. Zhao, H. Zhang, C. Yu, L. Cheng, G. Shu, B. Kong, and
D. Niu, “RecGURU: Adversarial learning of generalized user represen-
tations for cross-domain recommendation,” in Proceedings of the 15th
ACM International Conference on Web Search and Data Mining, 2022,
pp. 571–581.

[24] H. Liu, N. Zhao, X. Zhang, H. Lin, L. Yang, B. Xu, Y. Lin, and W. Fan,
“Dual constraints and adversarial learning for fair recommenders,”
Knowledge-Based Systems, p. 108058, 2022.

[25] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” CoRR, vol. abs/1412.6572, 2014.

[26] X. He, Z. He, X. Du, and T. Chua, “Adversarial personalized ranking for
recommendation,” in Proceedings of the 41st International ACM SIGIR
Conference on Research, 2018, pp. 355–364.

[27] F. Yuan, L. Yao, and B. Benatallah, “Adversarial collaborative auto-
encoder for top-N recommendation,” in Proceedings of the 2019 Inter-
national Joint Conference on Neural Networks, 2019, pp. 1–8.

[28] X. Ma, T. Qian, Y. Liang, K. Sun, H. Yun, and M. Zhang, “Enhancing
graph convolution network for novel recommendation,” in Proceedings
of the 27th International Conference on Database Systems for Advanced
Applications, 2022, pp. 69–84.

[29] R. Shrivastava, D. S. Sisodia, N. K. Nagwani, and U. R. BP, “An
optimized recommendation framework exploiting textual review based
opinion mining for generating pleasantly surprising, novel yet relevant
recommendations,” Pattern Recognition Letters, vol. 159, pp. 91–99,
2022.

[30] J. Li, K. Lu, Z. Huang, and H. T. Shen, “Two birds one stone: On both
cold-start and long-tail recommendation,” in Proceedings of the 2017
ACM on Multimedia Conference, 2017, pp. 898–906.

[31] D. Chae, J. Kang, S. Kim, and J. Choi, “Rating augmentation with
generative adversarial networks towards accurate collaborative filtering,”
in Proceedings of the World Wide Web Conference, 2019, pp. 2616–2622.

[32] Z. Lin, W. Pan, and Z. Ming, “FR-FMSS: Federated recommendation
via fake marks and secret sharing,” in Proceedings of the 15th ACM
Conference on Recommender Systems, 2021, pp. 668–673.

Authorized licensed use limited to: SHENZHEN UNIVERSITY. Downloaded on March 08,2024 at 05:45:24 UTC from IEEE Xplore. Restrictions apply.

