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Abstract. The effectiveness of an online marketing campaign heav-
ily relies on the identification of user groups that exhibit high sensi-
tivity to specific treatments. However, existing works in this domain
has encountered certain limitations when applied in practical settings.
Firstly, most studies have primarily focused on binary treatment sce-
narios, but real-world industrial applications often involve multi-valued
treatments, rendering these approaches incompatible. Secondly, although
a few studies have addressed multi-valued treatment scenarios, many of
them have directly extended binary treatment architectures without con-
sidering additional optimization. This oversight can result in redundant
model parameters and performance bottlenecks. In order to encounter
aforementioned challenges, we propose a novel reparameterization multi-
head treatment uplift network, or RMNet for short. RMNet incorporates
an invariant feature representation and a reparameterization multi-head
module. This module achieves a balanced representation of all treatments
by employing gradient constraints, thereby mitigating selection bias and
enhancing model efficiency and performance. The latter responses to
different treatments as offsets relative to the control response, thus we
employ a reparameterization multi-head structure to effectively reduce
the number of model parameters necessary for predicting responses to
different treatments. Finally, extensive experiments are conducted on two
datasets to demonstrate the effectiveness and efficiency of our RMNet.
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1 Introduction

Enhancing user engagement and increasing platform revenue through effective
online marketing strategies is a critical objective of the online platform [8]. These
strategies encompass the implementation of well-designed incentives, including
coupons, discounts, and bonuses. For the successful implementation of an online
marketing strategy that ensures efficient delivery and minimal costs, precise
identification of the target user group for each incentive is more important. To
achieve this goal, a marketing model needs to discern the impact of different
incentives on user response and focus on high-gain users within each incentive.
In practical scenarios, we often observe only one type of user response, which can
be attributed to either a specific incentive (i.e., treatment group) or without any
incentive (i.e., control group). This problem is different from traditional super-
vised learning tasks and is commonly regarded as a causal inference problem,
where the estimation of the impact of different incentives on user responses is
regarded as an individual treatment effect (ITE) [16], also known as uplift. As
a result, previous studies have proposed various uplift modeling techniques and
demonstrated their effectiveness in online marketing [6,12].

The existing body of uplift modeling methods primarily centers around
three research directions: 1) Meta-learner-based approaches: This research direc-
tion leverages the off-the-shelf estimators as base learners for different groups.
The predicted differences between these groups are then interpreted as uplifts.
Notably, the S-Learner [7] and T-Learner [7] are two representative meth-
ods within this direction. They employ a single global estimator or estima-
tors corresponding to different treatment types. 2) Tree-based (or Forest-based)
approaches: The fundamental concept behind this research direction involves
partitioning users into distinct subgroups based on their uplift values within the
feature space. Uplift prediction can be performed on each leaf node by employ-
ing diverse splitting criterias [12,15]. Notably, the Causal Forest [18] employs
an ensemble of multiple trees to estimate treatment effect. 3) Neural network-
based approaches: This research direction leverages neural networks with flexible
structures to predict uplift. Consequently, it is natural to adapt neural networks
as base learners for meta-learner methods. In recent years, some representa-
tion learning based methods are proposed, such as TARNet [13], CFRNet [13],
Dragonnet [14], and others, which aim to mitigate various biases prevalent in
online marketing scenarios. In this study, we specifically focus on the neural
network-based research direction due to its enhanced flexibility and generaliz-
ability compared to other research directions.

Although the existing uplift models for online marketing have shown promis-
ing results, most have focused on the binary treatment setting, which only con-
siders whether to deliver a coupon to a user. However, in many real-world scenar-
ios, a marketing campaign is usually more likely to involve multiple incentives.
For example, a service platform’s discount coupons may be of multiple different
amounts. To solve this problem, some recent works have focused on addressing
the setting of multi-valued treatments, e.g., MEMENTO [9] and HydraNet [17].
However, these methods are usually directly extended based on the represen-
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tative architecture of the above-mentioned binary treatment and do not make
more additional optimizations for the characteristics of multi-valued treatment.
This will make these methods likely to have redundant model parameters and
bottlenecks in performance and efficiency. For ease of understanding, we show
in Fig. 1 the architecture of representative multi-valued treatment methods and
some binary methods extended to the multi-valued treatment setting. We can see
that existing methods design the same network structure for each response pre-
diction, and this will significantly lead to excessive parameter size and inefficient
training when the number of treatments increases. In addition, existing methods
usually adopt alignment constraints on different treatment representations (e.g.,
various distribution distances) to solve the selection bias, and this approach is
also prone to high complexity when the number of treatments increases [20].

Fig. 1. Architecture diagram of some representative neural network-based uplift mod-
eling methods with multi-valued treatment, where D represents the training set with
{(xi, ti, yi)}ni=1, ŷ0, ŷ1, . . . , ŷk denote the predicted responses for the control group and
treatment groups, respectively, and t̂ is the predicted treatment.

To address the aforementioned challenges, we propose a novel reparameteri-
zation multi-head treatment uplift network, named RMNet. RMNet consists of
two customized modules designed to alleviate the limitations of existing meth-
ods. Firstly, an invariant feature representation module is employed to obtain
a balanced representation for all treatments. This is achieved by treating each
treatment as a domain and utilizing domain-invariant learning with gradient
constraints. Through this, we effectively reduce the complexity associated with
aligning different treatment representations, especially when the number of treat-
ment increases. Secondly, a reparameterization multi-head module is introduced,
which regards the responses to different treatments as offsets based on the control
response (i.e., without any treatment). A reparameterization multi-head struc-
ture is utilized to predict the response to different treatments. This approach
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significantly reduces the number of model parameters required for prediction
heads for different treatments and enhances knowledge transfer between treat-
ments. Furthermore, we provide a theoretical analysis of the invariant balanced
representation, highlighting its significance in decision-making. Additionally, we
conduct comprehensive offline and online evaluations, the experimental results
demonstrate the effectiveness and efficiency of our proposed RMNet.

2 Related Works

Uplift Modeling with Binary Treatment. In binary treatment scenario, we
review the related works by the three research lines mentioned in the above. 1)
S-Learner [7] and T-Learner [7] directly model the user response by using one or
two base learners, respectively. To mitigate the selection bias, X-Learner [7] and
R-Learner [10] are proposed to get unbiased and more accurate uplift prediction.
2) Uplift-Tree [12] is modeled on the standard decision tree to continuously select
the optimal split features and split points according to the size of the informa-
tion gain, then to achieve the process of precise stratification. The core idea is to
design the splitting criterion to make the prediction of uplift after splitting more
accurate. Especially, Causal Forest [18] ensemble multiple causal trees to predict
the uplift. Based on this structure, by designing different split criterions, there
are some variants [20] which can get more accurate uplift prediction in various
scenarios. 3) Neural network based methods have got great research interest in
recent years. TARNet [13] constructs a shared feature representation and two
seperate response prediction heads for the uplift prediction. On the basis of it,
CFRNet [13] introduces the integral probability metrics (IPM) to train a bal-
anced representation for treatment and control groups. Dragonnet [14] leverages
the target regularization approach to model the prediction error of the separate
label prediction heads. Most of the uplift models designed for binary treatment
are difficult to extend to the multi-valued treatment setting. Our RMNet is a
novel uplift model designed for multi-valued treatment.

Uplift Modeling with Multi-valued Treatment. Due to the uplift model-
ing problems with multi-valued treatment are common in real-world applications,
some works [4] are proposed to solve this problem with different model structures.
[21] extends standard meta learner-based uplift models to support multi-valued
treatment with different costs. On top of CFRNet, [9] propose MEMENTO to
get a balanced representation for different treatment and control groups. [17])
propose Hydranet, which reform the dragonnet to support for the multi-valued
treatment setting. For the extension of meta learners, [1] carry out a theoretical
analysis of their error upper bounds as functions of important parameters, and
show that the naive extensions do not always provide satisfactory results. How-
ever, the proposed neural network-based methods for multiple treatment uplift
modeling always have numerous model parameters, which decrease the model
efficiency. Different from above works, our RMNet achieves more accurate uplift
predictions using fewer model parameters, resulting in improved model efficiency.
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3 Preliminaries

Let D = {(xi, ti, yi)}n
i=1 represents the observed dataset consisting of n sam-

ples. Without loss of generality, xi ∈ X ⊂ R
d denotes a d-dimensional feature

vector. yi ∈ Y represents the response variable, where Y can be either binary or
continuous. ti ∈ T ∈ {0, 1, . . . ,K} with K ≥ 2 is the treatment indicator vari-
able, indicating different treatments such as various discount levels. Note that
ti = 0 corresponds to the situation where no treatment is applied. To formalize
the problem, we adopt the Neyman-Rubin potential outcome framework [11]
to define the uplift modeling problem with multi-valued treatment. Let yi(k)
and yi(0) denote the potential outcomes for user i when receiving treatment
ti = k ∈ {1, . . . , K} or not receiving any treatment, respectively. The incre-
mental improvement caused by a specific treatment k (referred to as individual
treatment effect or uplift) is denoted as τk

i , defined as:

τk
i = yi(k) − yi(0). (1)

Since we can only observe one response (i.e., yi(k) or yi(0)) for each user,
we do not have access to the actual uplift label τk

i . Fortunately, under certain
appropriate assumptions [16], we can use the conditional average treatment effect
(CATE) as an unbiased estimator for the uplift. CATE is defined as:

τk
i (xi) = E(yi(k) − yi(0)|xi)

= E(yi(k)|ti = k,xi)
︸ ︷︷ ︸

μk(xi)

−E(yi(0)|ti = 0,xi)
︸ ︷︷ ︸

μ0(xi)

. (2)

This represents the expected treatment effect between ti = 0 and ti = k given
xi. For brevity of notation, we will omit the subscript i in the following if there is
no ambiguity. Intuitively, the desired objective can be expressed as the difference
between two conditional means τk(x) = μk(x)−μ0(x). Once we obtain the uplift
predictions τ̂k(x) for all k different incentives, we can use an evaluation metric
to rank users and make the final decision regarding treatment assignment.

4 Methodology

In the high level, we aim to design a more effective and efficient uplift model
for multi-valued treatment setting, which incorporates an invariant feature rep-
resentation module and a reparameterization multi-head module.

4.1 Architecture

The proposed model, called the Reparameterization Multi-Head Treatment
Uplift Network with Invariant Representation (RMNet), is depicted in Fig. 2.
Given a sample {x, t, y}, the invariant feature representation module employs
established feature encoding techniques to convert the feature vectors x into
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embedding representations. We refer to this process as Φ(·) and denote the
resulting embedding representation as Φ(x). In contrast to most existing meth-
ods that address selection bias by imposing an alignment constraint on the
embedded representations across different treatment groups, we treat different
treatments as distinct domains. This approach transforms the problem into a
domain-invariant representation, i.e. Φ(x) ⊥⊥ t. Then, following the acquisition
of the balanced representation from the previous module, our reparameteriza-
tion multi-head module treats the responses of different treatments as offsets
based on the control response. It introduces a reparameterization structure for
prediction. Instead of separately estimating μ0 (x) and μk (x), we build upon the
identity μk(x) = μ0(x) + τk(x), k ∈ {1, . . . , K}. The offset μ0(x) directly con-
tributes to the control response prediction head h0, while τk is estimated by the
uplift prediction heads hτk . Moreover, h0 can be designed with a more complex
structure compared to hτk to capture shared information among different treat-
ment response predictions. To further discourage redundancy and encourage the
identification of private structures, we apply a regularizer to orthogonalize the
shared control response space and the private subspaces of different treatments.
For training our RMNet, all prediction heads are jointly optimized with param-
eter complexity regularization. The final learning objective of our RMNet can
be formulated as follows:

min
Θf ,Θt,Θh0 ,Θh

τk

LRMNet = Ly + α(LΘt
t − LΘf

t ) + λ1Ro + λ2(RΦ + Rh0 +
∑

k∈{1,...,K} Rh
τk

),

(3)
where Ly = L (y, h0 + hτk) denotes the response prediction loss, and for con-
tinuous y, L(·, ·) is the Mean Square Error (MSE) loss, otherwise L(·, ·) is the
Binary Cross Entropy (BCE) loss. The prediction loss Lt for the treatment pre-
diction head requires performing a gradient inversion operation. RΦ, Rh0 , and
Rh

τk
represent the parameter regularization terms, typically implemented as L2

regularization, for the balanced representation, shared reparameterization head,
and separate uplift prediction heads, respectively. Ro denotes the orthogonal
regularization for the control prediction head h0 in relation to the other uplift
prediction heads hτk . The hyper-parameters α, λ1, and λ2 control the trade-off
between different components. Next, we provide a detailed description of each
module based on the training process.

4.2 Invariant Feature Representation Module

To begin, we consider K different potential treatments, denoted as k ∈
{1, . . . , K}, and one control group, which represent distinct domains. Our objec-
tive is to construct a balanced representation of features x that exhibits an
invariant distribution across different domains:

P (Φ (x) | t = 0) = · · · = P (Φ (x) | t = k) . (4)

To facilitate explanation, we denote the treatment prediction as Qt(Φ(x);Θt)
and the response prediction as Qy(Φ(x);Θy). Here, Θy = {Θh0 , Θhτ1 , . . . , Θh

τk
}
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Fig. 2. The overall architecture of our RMNet. In addition, we also add the L2 regu-
larization for each neural network in the architecture, which is shown in Eq. (3).

represents the parameters for the response prediction heads. Additionally, the
feature representation network Φ(·) is parameterized by Θf , denoted as Φ(x;Θf ).
Consequently, for each sample in the dataset, the loss for response prediction can
be defined as:

Ly = ‖y − Qy (Φ (x;Θf ) ;Θy) ‖2. (5)

Note that the BCE loss can be used for the binary response instead of the MSE
loss. Similarly, for the treatment prediction, the loss function Lt is given by:

Lt = −
K

∑

j=0

It=j log (Qt (Φ (x;Θf ) ;Θt)) . (6)

Subsequently, in order to construct a treatment-aware balanced representation
from the standpoint of domain-invariant representation, our objective is to mini-
mize the encoding of domain information in feature representations, while simul-
taneously minimizing the losses in response prediction. In other words, the fea-
ture representations should not enable accurate restoration of domain labels.
Thus, the overall loss Lb for balanced representation can be summarized as:

Lb(Θf , Θt, Θy) = Ly(Θf , Θy) − αLt(Θf , Θt), (7)

where α is the hyper-parameter to control the trade-off between treatment and
response predictions. Through the minimization of the aforementioned objective,
we can acquire a balanced representation that effectively mitigates the selec-
tion bias present in the dataset. However, in practical implementation, directly
solving Eq. (7) poses an uncontrollable risk. This is due to the fact that the
optimization of the second term on the right-hand side may lead the model to
opportunistically optimize its performance, subsequently impacting the efficacy
of each subsequent treatment prediction head. To address this challenge and effi-
ciently solve Eq. (7), we can reformulate the objective function Lb(Θf , Θt, Θy)
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as the search for a saddle point
(

Θ̂f , Θ̂t, Θ̂y

)

that achieves equilibrium between
treatment and response prediction.

(

Θ̂y, Θ̂f

)

= arg min
Θ̂f ,Θy

Ly (Θf , Θy) − αLt(Θf , Θ̂t),

Θ̂t = arg max
Θt

Ly

(

Θ̂f , Θ̂y

)

− αLt(Θ̂f , Θt).
(8)

From an intuitive perspective, the aforementioned operations can often be incor-
porated within an uplift network structure, situated between two components:
response predictions that anticipate the target labels, and treatment predictions
that forecast the treatments received by the user. Drawing inspiration from prior
research on domain-invariant representations [5], we can effectively optimize the
aforementioned objective by reversing the gradient direction on the feature rep-
resentation. This reversal occurs during the gradient backpropagation process of
the model and is driven by the loss associated with treatment prediction. Con-
sequently, the feature representation receives gradients aimed at minimizing the
loss in response prediction, while simultaneously maximizing the loss in treat-
ment prediction. This approach ensures a balanced representation. To achieve
the desired stationary point as outlined in Eq. (8), we employ the following gra-
dient update step.

Θf ←− Θf −
(

∂Ly

∂Θf
− α

∂Lt

∂Θf

)

,

Θy ←− Θy − ∂Ly

∂Θy

Θt ←− Θt − α
∂Lt

∂Θt

(9)

In our experimental setup, we initially assign an arbitrary value to α, and during
the training process, we apply an exponentially increasing schedule.

Finally, we provide corresponding theoretical insights into the above process
to show that it can obtain the desired balanced representation, i.e., Theorem 1.

Theorem 1. For each k ∈ {0, 1, . . . ,K}, we denote the distribution of Φ(x;Θf )
conditioned on t = k as PΦ

k . Additionally, let Qk
t represent the output of Qt

corresponding to treatment k. The minimax game can be formally defined as
follows:

min
Θf

max
Θt

K
∑

k=0

Ex

[

log
(

Qk
t (Φ (x;Θf ) ;Θt)

)]

,

s.t.
K

∑

k=0

Qk
t (Φ (x;Θf )) = 1.

(10)
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The global minimum of the function is achieved if and only if the learned
representations exhibit invariance across all domains. This can be denoted as
PΦ
0 = PΦ

1 = . . . = PΦ
K .

To prove this theorem, we first prove the following proposition.

Proposition 1. Given a fixed Φ, we define x′ = Φ (x). In this case, the optimal
prediction probabilities of Qt can be expressed as follows:

Qj∗
t (x′) =

PΦ
j (x′)

∑K
i=0 PΦ

i (x′)
.

Proof. For fixed Φ, the optimal prediction probabilities are given by

Q∗
t = arg max

Θt

K
∑

j=1

∫

x′
log

(

Qj
t (x′)

)

PΦ
j (x′) dx′ s.t.

K
∑

j=1

Qj
t (x′) = 1.

Maximizing the value function pointwise and applying Lagrange multiplies,
we get

Q∗
t = arg max

Θt

K
∑

j=1

log
(

Qj
t (x′)

)

PΦ
j (x′) + α

⎛

⎝

K
∑

j=1

Qj
t (x′) − 1

⎞

⎠ .

By setting the derivative with respect to Qj∗
t (x′) to zero and solving for

Qj∗
t (x′), we obtain the following expression:

Qj∗
t (x′) = −

PΦ
j (x′)
α

Here, the value of α can be determined by satisfying the constraint
α = −

∑K
i=0 PΦ

i (x′).

Next, we can get the proof of Theorem 1.

Proof. By substituting the expression derived from Proposition 1 into the mini-
max game defined in Eq. (10), the objective function for Φ can be formulated as
follows:

min
Φ

K
∑

j=0

Ex′∼P Φ
j

[

log

(

PΦ
j (x′)

∑K
i=0 PΦ

i (x′)

)]
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We then note that

K
∑

j=0

Ex′∼P Φ
j

[

log

(

PΦ
j (x′)

∑K
i=0 PΦ

i (x′)

)]

+ K log K

=
K

∑

j=0

(

Ex′∼P Φ
j

[

log

(

PΦ
j (x′)

∑K
i=0 PΦ

i (x′)

)]

+ log K

)

=
K

∑

j=0

Ex′∼P Φ
j

[

log

(

PΦ
j (x′)

1
K

∑K
i=0 PΦ

i (x′)

)]

=
K

∑

j=0

KL

(

PΦ
j (x′) ‖ 1

K

K
∑

i=0

PΦ
i (x′)

)

= K · JSD
(

PΦ
0 , . . . , PΦ

K

)

where KL(·‖·) denotes the Kullback-Leibler divergence, while JSD(·, . . . , ·) rep-
resents the multi-distribution Jensen-Shannon Divergence. It should be empha-
sized that K log K is a constant, and the multi-distribution JSD is always non-
negative, attaining a value of 0 only when all the distributions are identical.
Consequently, we can deduce that PΦ

0 = PΦ
1 = . . . = PΦ

K .

4.3 Reparameterization Multi-head Module

Instead of estimating μ0(x) and μk(x) separately, we build upon the identity
μk(x) = μ0(x) + τk(x), where k ∈ {1, . . . , K}. We utilize a shared reparame-
terization head responsible for predicting control responses (i.e., responses with-
out any treatment), while other treatment prediction heads are responsible for
predicting uplifts associated with different treatments. This modified network
structure effectively reduces the number of model parameters compared to the
existing structure. The shared reparameterization head facilitates better knowl-
edge transfer among different prediction heads, thereby mitigating selection bias
in the data. Furthermore, as illustrated in Fig. 2, we can design a more complex
structure for the shared reparameterization head compared to the lightweight
prediction heads. This enhanced structure enables better capturing of shared
information within the dataset. Specifically, we denote the shared reparameteri-
zation head as h0 and each uplift prediction head as hτk . Consequently, the loss
function Ly in Eq. (3) can be formulated as follows:

Ly = ‖y − h0(Φ(x))||2 +
∑

k∈{1,··· ,K}
‖y − (h0(Φ(x)) + hτk(Φ(x)))‖2. (11)

Note that the BCE loss can be used for the binary response instead of the MSE
loss.

Moreover, we incorporate an extra orthogonality penalty between the shared
reparameterization head and the other treatment prediction heads. This penalty
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serves to discourage redundancy and promote the identification of distinct struc-
tures.

In particular, we employ an orthogonality constraint (Ro) between the sub-
spaces of each uplift prediction head and the shared parameterization prediction
head at every layer.

Ro

(

Θh0 , Θh
τk

)

=
∑

k∈{1,··· ,K}

L
∑

l=1

∥

∥

∥θl�
h0

θh
τk ,1:ml−1

s

∥

∥

∥

2

F
, (12)

where ‖ · ‖2F represents the squared Frobenius norm. The variable l denotes
the layer number, where l > 1. The terms pl−1

h and pl−1
τ refer to the output

dimensions of the shared and private subspaces in the previous layer, respec-
tively. The weights in the shared subspace are denoted as θl

h ∈ R
pl−1

h ×pl
τ , while

θl
h

τk
∈ R

(pl−1
h +pl−1

τ )×pl
h represents the weights in each private subspace. The

hyper-parameter λ2 is used to control the trade-off. To promote orthogonality
or lack of correlation between the weight matrices of different prediction heads in
our RMNet, we incorporate this regularization term into the final loss function
during training. Furthermore, in order to regularize the complexity of Φ(·), h0,
and each hτk individually, we apply L2 regularization R(·) to the parameters of
all the prediction heads.

RΦ + Rh0 +
∑

k∈{1,...,k}
Rh

τk
= R(Θf ) + R(Θh0) +

∑

k∈{1,...,K}
R(Θh

τk
). (13)

5 Experiments

In this section, we present the performance of our RMNet and the other methods
to be compared. The following questions are also proposed and investigated:

– RQ1: How does our RMNet performs compared to other baselines?
– RQ2: How does each module of our RMNet influences the performance?
– RQ3: Can our RMNet get balanced feature representation?
– RQ4: How is the model complexity of our RMNet compared to other base-

lines?
– RQ5: How effective is our RMNet in an online deployment?

5.1 Experimental Setup

Datasets. We performed experiments on two datasets to demonstrate the effec-
tiveness of our method: MultiTwins [2], a publicly available dataset, and Pro-
duction, a real-world industrial dataset. Below, we provide detailed information
about these datasets:
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MultiTwins1: This dataset consists of all births in the USA between 1989 and
1991 [2]. And it can be used for multi-treatment effect estimation. For more
detailed dataset description, please refer to [19].

Production: This dataset was obtained from one of China’s biggest short video
platforms. For such platform, video sharpening is known as a valuable source
for studying user experience indicators. Different degrees of video sharpening
can significantly influence user experiences, potentially affecting users’ playback
time. To investigate this, we conducted random experiments over two-week,
where we assigned three levels of video sharpening (T = 1, 2, 3) as treatment
groups, while regular videos (T = 0) served as the control group. By tracking
users’ short video playback time during this period, we quantified the impact of
definition degradation on user experience. The resulting dataset consists of over
7 million users, with 108 features capturing various user-related characteristics.

Baselines. To evaluate the effectiveness of our RMNet, we compare its per-
formance against several representative methods in neural network-based uplift
modeling, they are S-Learner [7], T-Learner [7], CFRNet [13], MEMENTO [9]
and HydraNet [9].

Evaluation Metrics. Following the methodology employed in prior work [3],
we utilize two commonly used evaluation metrics in uplift modeling: the Qini
coefficient and Kendall’s uplift rank correlation. For multi-valued treatment set-
tings, we utilize mQini and sdQini, which correspond to the mean and standard
error of the Qini coefficient for all possible treatments, respectively. Similarly,
mKendall and sdKendall can be calculated as measures of Kendall’s uplift rank
correlation.

Implementation Details. All baselines and our RMNet are implemented using
PyTorch 1.10. The AdamW optimizer is employed, and the maximum number
of training epochs is set to 20. The Optuna package2 is utilized for parameter
search to determine the optimal parameters for all baselines. In our RMNet, the
objective of the parameter-tuning process is mQini.

5.2 Overall Performance (RQ1)

In Table 1, we present the comparison results for the MultiTwins and Production
datasets, followed by the following observations:

For the MultiTwins dataset: 1) T-Learner exhibits superior performance
compared to S-Learner. Despite the utilization of more complex architectures
by certain baselines, T-Learner remains competitive in terms of certain met-
rics. This suggests that the task of uplift modeling in online marketing scenar-
ios differs from traditional individual treatment effect (ITE) estimation. When
designing more complex architectures, it is crucial to address essential factors

1 http://www.nber.org/data/linked-birth-infant-death-data-vital-statistics-data.
html.

2 https://optuna.org/.

http://www.nber.org/data/linked-birth-infant-death-data-vital-statistics-data.html
http://www.nber.org/data/linked-birth-infant-death-data-vital-statistics-data.html
https://optuna.org/
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that contribute to significant performance improvements, rather than simply
extending the model structure without careful consideration. 2) TARNet, CFR-
Net, MEMENTO, and HydraNet achieve better performance by employing more
complex architectures, although the improvement may not be significant across
all metrics. This implies that naively extending the structure of binary treatment
models without considering effectiveness and efficiency may not yield substantial
gains. 3) In contrast to other baselines, our RMNet consistently outperforms all
of them in most cases. By utilizing Qini as the objective for hyperparameter
tuning, we significantly enhance Qini, even though other metrics may exhibit
fluctuations. For the Production dataset: 1) S-Learner and T-Learner remain
relatively stable and demonstrate competitive results. 2) Naively extending the
binary treatment architecture in the baselines encounters a performance bottle-
neck, as the abundance of model parameters may lead to learning shocks and
make optimization challenging when dealing with numerous treatment groups. 3)
Our RMNet considers the effectiveness and efficiency of the uplift modeling struc-
ture. On the Production dataset, our RMNet consistently outperforms all base-
lines, further validating the rationality of the proposed architecture. Through
experiments conducted on both a public dataset and a production dataset, we
verify the effectiveness of our RMNet. The results demonstrate that our RMNet’s
architecture achieves superior performance in multi-valued treatment uplift mod-
eling.

5.3 Ablation Study (RQ2)

Furthermore, we conducted ablation studies on our RMNet, aiming to analyze
the individual contributions of each module. We systematically removed two
components of the RMNet, namely the adversarial training for invariant fea-
ture representation (IFR) and the shared reparameterization head (SRH). We
created three variants of RMNet, denoted as RMNet (w/o IFR), RMNet (w/o
SRH-OR), and RMNet (w/o SRH). Specifically, RMNet (w/o SRH-OR) indi-
cates the removal of orthogonal regularization between the control response
head and other uplift prediction heads. The results are presented in Table 2.
It is evident from the results that removing any component leads to a degrada-
tion in performance. This confirms the effectiveness of each component designed
in our RMNet. In particular, the disentangled feature representation module
enables selective balancing of feature representation, enhancing the reliability of
decision-making. The shared reparameterization module, with a more complex
architecture compared to other heads, improves model efficiency and alleviates
the inductive bias in uplift prediction. Orthogonal regularization reduces redun-
dancy and enhances the model’s performance. All the modules contribute to
enhancing the effectiveness of uplift modeling with multi-valued treatment.

5.4 Balance Representation (RQ3)

To evaluate whether our RMNet has indeed learned treatment invariant represen-
tations,, we present the visualization in Fig. 3. We depict the T-SNE embeddings
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Table 2. Results of the ablation studies on the Production dataset, where the best and
second best results are marked in bold and underlined, respectively. Note the reported
results are the mean ± standard deviation over five runs with different seeds.

Methods mQini↑ sdQini↓ mKendall↑ sdKendall↓
RMNet (w/o IFR) 0.6103 ± 0.0304 0.1903 ± 0.0192 0.6704 ± 0.0199 0.2677 ± 0.0241

RMNet (w/o SR-OR) 0.6022 ± 0.0204 0.2071 ± 0.0298 0.6255 ± 0.0201 0.2401 ± 0.0259

RMNet (w/o SR) 0.5022 ± 0.0213 0.2402 ± 0.0244 0.6887 ± 0.0286 0.3018 ± 0.0204

RMNet 0.7097 ± 0.0322 0.1877 ± 0.0232 0.7042 ± 0.0283 0.2011 ± 0.0137

of both biased and balanced data from both datasets. Our observation reveals
that our RMNet successfully mitigates the feature disparity between biased and
balanced data, indicating that the learned feature representation Φ achieves a
balanced distribution across various treatments and facilitates the model in mak-
ing more reliable decisions.

Fig. 3. T-SNE visualization of the biased data and the learned balanced representation
in MultiTwins and Production.

5.5 Complexity Evaluation (RQ4)

We evaluate the model complexity of our RMNet in comparison to other base-
lines. To ensure a fair comparison among methods with the feature represen-
tation module, we maintain identical network structures for this module across
TARNet, CFRNet, MEMENTO, HydraNet, and RMNet. The model size and
run time are presented in Fig. 4. In particular, the run time is measured over 20
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training epochs on the Production dataset, excluding the evaluation time cost.
All experiments are conducted on NVIDIA V100 GPUs.

As expected, due to the incorporation of complex shared heads and
lightweight heads, the model size of our RMNet is smaller than that of
MEMENTO and HydraNet, while remaining competitive with TARNet and
CFRNet. Regarding the run time, our RMNet outperforms MEMENTO,
HydraNet, and CFRNet. Notably, CFRNetWASS exhibits the longest run time
among all methods, primarily due to the high computational cost of Wasserstein
distance [13]. HydraNet follows with the second longest run time, attributed
to the inclusion of a complex target regularization loss. Considering the per-
formance of these methods as shown in Table 1, our RMNet demonstrates an
optimal balance of model size, run time, and performance, making it an effective
and efficient uplift model.

Fig. 4. Model complexity (i.e. model size and run time) comparison of all the baselines
and our RMNet.

5.6 Online Experiment Results

To test the improvement obtained by using RMNet, we conducted a two-week
online A/B experiment. In this experiment, the marketing objective was to
enhance users’ playback time within the platform by employing different lev-
els of video sharpening as treatments. Specifically, we considered four distinct
levels of video sharpening as treatments. We partitioned the online user base into
two non-overlapping sets, ensuring that they do not interfere with each other.
Each set comprised hundreds of millions of users. The existing method employed
on the online platform was a multi-valued treatment Causal Forest (CF) [18].
To evaluate the performance, we adopted ROI (Return On Investment) as the
metric. Notably, our RMNet exhibited a 0.5305% improvement over the CF.
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6 Conclusion

This paper proposes RMNet, an effective and efficient uplift model for multi-
valued treatment. RMNet comprises two key components: 1) an invariant feature
representation module that leverages gradient constraints to obtain a balanced
representation of all treatments, mitigating selection bias and enhancing model
effectiveness for more accurate uplift prediction. 2) a reparameterization multi-
head module that treats responses to different treatments as offsets relative to
the control response. It employs a reparameterization multi-head structure to
effectively reduce the number of model parameters. We also conduct experiments
on two datasets to demonstrate the effectiveness and efficiency of RMNet.
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dation of China (No. 62302310).

References

1. Acharki, N., Lugo, R., Bertoncello, A., Garnier, J.: Comparison of meta-learners
for estimating multi-valued treatment heterogeneous effects. In: International Con-
ference on Machine Learning (2023)

2. Almond, D., Chay, K.Y., Lee, D.S.: The costs of low birth weight. Q. J. Econ.
120(3), 1031–1083 (2005)

3. Belbahri, M., Murua, A., Gandouet, O., Partovi Nia, V.: QINI-based uplift regres-
sion. Ann. Appl. Stat. 15(3), 1247–1272 (2021)

4. Diemert, E., Betlei, A., Renaudin, C., Amini, M.R., Gregoir, T., Rahier, T.: A large
scale benchmark for individual treatment effect prediction and uplift modeling.
arXiv preprint arXiv:2111.10106 (2021)

5. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J.
Mach. Learn. Res. 17(1), 2030–2096 (2016)

6. Kawanaka, S., Moriwaki, D.: Uplift modeling for location-based online advertising.
In: Proceedings of the 3rd ACM SIGSPATIAL Workshop, pp. 1–4 (2019)

7. Künzel, S.R., Sekhon, J.S., Bickel, P.J., Yu, B.: Metalearners for estimating hetero-
geneous treatment effects using machine learning. Proc. Natl. Acad. Sci. 116(10),
4156–4165 (2019)

8. Liu, D., Tang, X., Gao, H., Lyu, F., He, X.: Explicit feature interaction-aware
uplift network for online marketing. arXiv preprint arXiv:2306.00315 (2023)

9. Mondal, A., Majumder, A., Chaoji, V.: Memento: neural model for estimating
individual treatment effects for multiple treatments. In: Proceedings of the 31st
ACM International CIKM, pp. 3381–3390 (2022)

10. Nie, X., Wager, S.: Quasi-oracle estimation of heterogeneous treatment effects.
Biometrika 108(2), 299–319 (2021)

11. Rubin, D.B.: Causal inference using potential outcomes: design, modeling, deci-
sions. J. Am. Stat. Assoc. 100(469), 322–331 (2005)

12. Rzepakowski, P., Jaroszewicz, S.: Decision trees for uplift modeling. In: 2010 IEEE
International Conference on Data Mining, pp. 441–450. IEEE (2010)

13. Shalit, U., Johansson, F.D., Sontag, D.: Estimating individual treatment effect:
generalization bounds and algorithms. In: ICML, pp. 3076–3085. PMLR (2017)

http://arxiv.org/abs/2111.10106
http://arxiv.org/abs/2306.00315


138 Z. Sun et al.

14. Shi, C., Blei, D., Veitch, V.: Adapting neural networks for the estimation of treat-
ment effects. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

15. Sun, Z., Chen, X.: M3tn: multi-gate mixture-of-experts based multi-valued treat-
ment network for uplift modeling. arXiv preprint arXiv:2401.14426 (2024)

16. Sun, Z., et al.: Robustness-enhanced uplift modeling with adversarial feature desen-
sitization. In: 2023 IEEE International Conference on Data Mining (ICDM), pp.
1325–1330. IEEE (2023)

17. Velasco, B., Cerquides, J., Arcos, J.L.: HydraNet: a neural network for the estima-
tion of multi-valued treatment effects. In: NeurIPS 2022 Workshop on Causality
for Real-World Impact (2022)

18. Wager, S., Athey, S.: Estimation and inference of heterogeneous treatment effects
using random forests. J. Am. Stat. Assoc. 113(523), 1228–1242 (2018)

19. Yoon, J., Jordon, J., Van Der Schaar, M.: GANITE: estimation of individualized
treatment effects using generative adversarial nets. In: ICLR (2018)

20. Zeng, S., Bayir, M.A., Pfeiffer III, J.J., Charles, D., Kiciman, E.: Causal transfer
random forest: Combining logged data and randomized experiments for robust
prediction. In: ICDM, pp. 211–219 (2021)

21. Zhao, Z., Harinen, T.: Uplift modeling for multiple treatments with cost optimiza-
tion. In: 2019 IEEE International Conference on Data Science, pp. 422–431. IEEE
(2019)

http://arxiv.org/abs/2401.14426

	Towards Effective and Efficient Multi-valued Treatment Uplift Modeling in Online Marketing
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Methodology
	4.1 Architecture
	4.2 Invariant Feature Representation Module
	4.3 Reparameterization Multi-head Module

	5 Experiments
	5.1 Experimental Setup
	5.2 Overall Performance (RQ1)
	5.3 Ablation Study (RQ2)
	5.4 Balance Representation (RQ3)
	5.5 Complexity Evaluation (RQ4)
	5.6 Online Experiment Results

	6 Conclusion
	References


